2019-02-19 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 06 , Vol. 01 , 2003    The geometry of violation of Bell’s inequality

The geometry of violation of Bell’s inequality
Weihan Tan1;2, Qizhi Guo1
1Department of Physics, Shanghai University, Shanghai 2004362Key Laboratory for Quantum Information and Measurements of Education Ministry, Tsinghua University, Beijing 100084

Chin. Opt. Lett., 2003, 01(06): pp.357-357-

Topic:Quantum optics
Keywords(OCIS Code): 270.0270  270.5570  

The purpose of this paper is to deduce an analytical expression for the violation of Bell’s inequality by quantum theory and plane trigonometry, and expound the violation and maximal violation of the first, second type Bell’s inequality in detail. Further, we find out the sufficient conditions for the region in which Bell’s inequalities are violated.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (526 KB)


Posted online:

Get Citation: Weihan Tan, Qizhi Guo, "The geometry of violation of Bell’s inequality," Chin. Opt. Lett. 01(06), 357-357-(2003)

Note: W. Tan’s e-mail address is weihantan@163.com.


1. J. S. Bell, Physics 1, 195 (1964).

2. J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phys. Rev. Lett. 23, 880 (1969).

3. B. S. Cirel’son, Lett. Math. Phys. 4, 93 (1980).

4. L. J. Landau, Phys. Lett. A 120, 54 (1987).

5. N. Gisin and A. Peres, Phys. Lett. A 162, 15 (1992).

6. N. D. Mermin, Phys. Rev. Lett. 65, 1838 (1990).

7. D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, Am. J. Phys. 58, 1131 (1990).

8. J. F. Clauser and A. Shimony, Rep. Prog. Phys. 41, 1881 (1978).

9. J. F. Clauser and M. A. Horne, Phys. Rev. D 10, 526 (1974).

10. S. J. Freedman and J. F. Clauser, Phys. Rev. Lett. 28, 938 (1972).

11. Y. H. Shih and C. O. Alley, Phys. Rev. Lett. 61, 2921 (1988).

12. A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).

13. N. Bohr, Phys. Rev. 48, 696 (1935).

14. D. Bohm, Quantum Theory (2nd ed.) (Englewood Cliffs, NJ, 1951) p. 614.

Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备15018463号-7 公安备案沪公网安备 31011402005522号