Photon statistics measurement for coherent fields
Yuan Liu,
Jun Wang,
Shuangli Dong,
Guofeng Zhang,
Liantuan Xiao,
Suotang Jia
State Key Laboratory of Quantum Optics and Quantum Optics Devices, College of Physics and Electronics Engineering, [Shanxi University], Taiyuan 030006
Chin. Opt. Lett.,
2008,
06(04):
pp.238-240-3
DOI:Topic:Coherence and statistical optics
Keywords(OCIS Code):
030.0030 140.0140 270.0270 030.5260
Abstract
An efficient scheme for photon statistics measurement is presented based on the Hanbury-Brown-Twiss configuration. We set the sampling time Ts to satisfy the relationship of Ts<Td<Tm, where Td is the dead time of each detector and Tm is the laser pulse repetition period. And each single photon detector cannot detect more than one photon in each pulse. The approach can sufficiently eliminate the influences of the detector’s dead time on photon statistics. At last, the photon statistics of coherent field is experimentally determined.
Copyright: © 2003-2012 . This is an open-access article distributed under the terms
of the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original author and source are credited.
View
PDF (0 KB)
Received:2007/8/8
Accepted:
Posted online:
Get Citation:
Yuan Liu, Jun Wang, Shuangli Dong, Guofeng Zhang, Liantuan Xiao, Suotang Jia, "Photon statistics measurement for coherent fields," Chin. Opt. Lett.
06(04),
238-240-3(2008)
Note:
This work was supported by the National Natural Science Foundation of China (No.10674086), “973" Program (No.2006CB921102), NCET, PCSIRT (No.IRT0516), the Shanxi Provincial Foundation for Leaders of Disciplines in Science, and the Natural Science Foundation of Shanxi Province (No.2007011006). Y. Liu’s e-mail address is liuyuan323115@126.com.
References
1. G. Li, T. C. Zhang, Y. Li, and J. M. Wang, Phys. Rev. A 71, 1050 (2005).
2. T. Tanabe, Nucl. Instrum. Methods Phys. Res. A 407, 251 (1998).
3. R. H. Brown and R. Q. Twiss, Nature 178, 1046 (1956).
4. H. J. Kimble, M. Dagenais, and L. Mandel, Phys. Rev. Lett. 39, 691 (1997).
5. F. Diedrich and H. Walther, Phys. Rev. Lett. 58, 203 (1987).
6. Th. Basche, W. E. Moerner, M. Orrit, and H. Talon, Phys. Rev. Lett. 69, 1516 (1992).
7. F. De Martini, G. Di Giuseppe, and M. Marrocco, Phys. Rev. Lett. 76, 900 (1996).
8. T. Huang, X. Wang, J. Shao, X. Guo, L. Xiao, and S. Jia, J. Lumines. 124, 286 (2007).
9. T.-Y. Wang and L.-T. Xiao, J. Appl. Opt. (in Chinese) 27, 281 (2006).
10. W. Tan and Q. Guo, Chin. Opt. Lett. 1, 118 (2003).
11. F. Treussart, R. Alléaume, V. L. Floc’h, L. T. Xiao, J.-M. Courty, and J.-F. Roch, Phys. Rev. Lett. 89, 093601 (2002).
12. D. Zhao, L. Liu, J. Wang, H. Lang, W. Pan, and X. Liu, Acta Opt. Sin. (in Chinese) 26, 1091 (2006).
13. L.-T. Xiao, Y.-T. Zhao, T. Huang, J.-M. Zhao, W.-B. Yin, and S.-T. Jia, Chin. Phys. Lett. 21, 489 (2004).
14. R. Alléaume, F. Treussart, J.-M. Courty, and J.-F. Roch, New J. Phys. 6, 85 (2004).
15. Q. D. Xuan, R. Alléaume, L. Xiao, F. Treussart, B. Journet, and J.-F. Roch, Eur. Phys. J. Appl. Phys. 35, 117 (2006).