2018-11-16 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 05 , Vol. 08 , 2010    10.3788/COL20100805.0493

Influence of the upper waveguide layer thickness on optical field in asymmetric heterostructure quantum well laser diode
Peixu Li1;2, Kai Jiang1;2, Shuqiang Li1;2, Wei Xia1;2, Xin Zhang2, Qingmin Tang2, Zhongxiang Ren2, Xiangang Xu1;2
1 State Key Laboratory of Crystal Material, [Shandong University], Ji'nan 250100, China
2 [Shandong Huaguang Optoelectronics Co.], Ltd., Ji'nan 250101, China

Chin. Opt. Lett., 2010, 08(05): pp.493-495-3

Topic:Lasers and laser optics
Keywords(OCIS Code): 140.2020  140.5960  230.5590  

Asymmetric broad-waveguide separate-confinement heterostructure (BW-SCH) quantum well (QW) laser diode emitting at 808 nm is analyzed and designed theoretically. The dependence of the optical field distribution, vertical far-field angle, and internal loss on different thicknesses of the upper waveguide layer is calculated and analyzed. Calculated results show that when the thicknesses of the lower and upper waveguide layers are 0.45 and 0.3 \mu m, respectively, for the devices with 100-\mu m-wide stripe and 1000-\mu m-long cavity, an output power of 7.6 W at 8 A, a vertical far-field angle of 37°, a slope efficiency of 1.32 W/A, and a threshold current of 189 mA can be obtained.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (391 KB)


Posted online:

Get Citation: Peixu Li, Kai Jiang, Shuqiang Li, Wei Xia, Xin Zhang, Qingmin Tang, Zhongxiang Ren, Xiangang Xu, "Influence of the upper waveguide layer thickness on optical field in asymmetric heterostructure quantum well laser diode," Chin. Opt. Lett. 08(05), 493-495-3(2010)

Note: This work was supported by the National Natural Science Foundation of China (No.50472068) and the Program for New Century Excellent Talents in University.


1. Y. Qu, S. Yuan, C. Liu, B. Bo, G. Liu, and H. Jiang, IEEE Photon. Technol. Lett. 16, 389 (2004).

2. R. K. Huang, B. Chann, L. J. Missaggia, J. P. Donnelly, H. T. Harris, G. W. Turner, A. K. Goyal, T. Y. Fan, and A. Sanchez-Rubio, IEEE Photon. Technol. Lett. 19, 209(2007).

3. G. Fang, J. Xiao, X. Ma, X. Feng, X. Wang, Y. Liu, B. Liu, M. Tan, and Y. Lan, Chin. J. Semicond. (in Chinese) 23, 809 (2002).

4. J. K. Wade, L. J. Mawst, D. Botez, and J. A. Morris, Electron. Lett. 34, 1100 (1998).

5. F. Dittmar, B. Sumpf, J. Fricke, G. Erbert, and G. Trankle, IEEE Photon. Technol. Lett. 18, 601 (2006).

6. A. Knauer, G. Erbert, R. Staske, B. Sumpf, H. Wenzel, and M. Weyers, Semicond. Sci. Technol. 20, 621 (2005).

7. J. Li, J. Han, J. Deng, D. Zou, and G. Shen, Chinese J. Lasers (in Chinese) 33, 1159 (2006).

8. M. Buda, W. C. van der Vleuten, G. Iordache, G. A. Acket, T. G. van der Roer, C. M. van Es, B. H. van Roy, and E. Smalbrugge, IEEE Photon. Technol. Lett. 11, 161 (1999).

9. K. Shigihara, K. Kawasaki, Y. Yoshida, S. Yamamura, T. Yagi, and E. Omura, IEEE J. Quantum Electron. 38, 1081 (2002).

10. J. J. Lee, L. J. Mawst, and D. Botez, J. Cryst. Growth 249, 100 (2003).

11. V. V. Bezotosnyi, V. V. Vasil'eva, D. A. Vinokurov, V. A. Kapitonov, O. N. Krokhin, A. Yu. Leshko, A. V. Lyutetskii, A. V. Murashova, T. A. Nalet, D. N. Nikolaev, N. A. Pikhtin, Yu. M. Popov, S. O. Slipchenko, A. L. Stankevich, N. V. Fetisova, V. V. Shamakhov, and I. S. Tarasov, Semiconductors 42, 350 (2008).

12. N. A. Pikhtin, S. O. Slipchenko, Z. N. Sokolova, A. L. Stankevich, D. A. Vinokurov, I. S. Tarasov, and Z. I. Alferov, Electron. Lett. 40, 1413 (2004).

13. L. Lin, G. Liu, Z. Li, M. Li, X. Wang, H. Li, and H. Tan, Chin. Opt. Lett. 6, 268 (2008).

14. P. Li, L. Wang, S. Li, W. Xia, W. Zhang, Q. Tang, Z. Ren, and X. Xu, Chin. Opt. Lett. 7, 489 (2009).

Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备15018463号-7 公安备案沪公网安备 31011402005522号