2018-12-17 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 05 , Vol. 08 , 2010    10.3788/COL20100805.0496

Frequency-stabilized diode laser at 780 nm with a continuously locked time over 100 h
Tong Zhou, Xianghui Qi, Qing Wang, Wei Xiong, Jun Duan, Xiaoji Zhou, Xuzong Chen
Institute of Quantum Electronics, School of Electronics Engineering and Computer Science, [Peking University], Beijing 100871, China

Chin. Opt. Lett., 2010, 08(05): pp.496-498-3

Topic:Lasers and laser optics
Keywords(OCIS Code): 140.2020  140.3425  250.5960  

Two extended-cavity diode lasers at 780 nm which are longtime frequency-stabilized to Rb87 saturated absorption signals are reported. A high-performance frequency-locking circuit module using a first-harmonic detection technique is designed and achieved. Two lasers are continuously frequency-stabilized for over 100 h in conventional laboratory condition. The Allan standard deviation of either laser is estimated to be 1.3×10<sup>-11</sup> at an integration time of 25 s. The system environment temperature drift is demonstrated to be the main factor affecting long-term stability of the stabilized lasers based on our correlation study between beat frequency and system environment temperature.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (422 KB)


Posted online:

Get Citation: Tong Zhou, Xianghui Qi, Qing Wang, Wei Xiong, Jun Duan, Xiaoji Zhou, Xuzong Chen, "Frequency-stabilized diode laser at 780 nm with a continuously locked time over 100 h," Chin. Opt. Lett. 08(05), 496-498-3(2010)

Note: This work was partially supported by the National "973" Program of China (Nos.2005CB724503, 2006CB921402, and 2006CB921401) and the National Natural Science Foundation of China (Nos. 60490280 and 10874008).


1. V. Shah, S. Knappe, L. Hollberg, and J. Kitching, Opt. Lett. 32, 1244 (2007).

2. L. Yi, X. Qi, W. Chen, D. Zhou, T. Zhou, X. Zhou, and X. Chen, Chin. Opt. Lett. 7, 36 (2009).

3. Ch. Andreeva, Y. Dancheva, M. Taslakov, A. Markovski, P. Zubov, and S. Cartaleva, Spectroscopy Lett. 34, 395(2001).

4. H. Yan, G. Yang, J. Wang, and M. Zhan, Chin. Opt. Lett. 6, 307 (2008).

5. M. D. Levenson and S. Kano, Introduction to Nonlinear Laser Spectroscopy (Academic Press, Boston, 1988).

6. M. Tetu, N. Cyr, B. Villeneuve, S. Theriault, M. Breton, and P. Tremblay, IEEE Trans. Instrum. Meas. 40, 191(1991).

7. J. Ye, S. Swartz, P. Jungner, and J. L. Hall, Opt. Lett. 21, 1280 (1996).

8. M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Science 269, 198 (1995).

9. Y. Lin, W. Chen, T. Li, P. Lin, P. Wang, and N. Liu, Chinese J. Lasers (in Chinese) 36, 1075 (2009).

10. Y. Wang, Principle of Quantum Frequency Standards (in Chinese) (Science Press, Beijing, 1986).

11. F. Riehle, Frequency Standards:Basics and Applications (Wliey, Weinheim, 2005).

Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备15018463号-7 公安备案沪公网安备 31011402005522号