2018-11-14 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 05 , Vol. 08 , 2010    10.3788/COL20100805.0502

Investigation of mode radiation loss for microdisk resonators with pedestals by FDTD technique
Yuede Yang, Shijiang Wang, Yongzhen Huang
State Key Laboratory on Integrated Optoelectronics, [Institute of Semiconductors], Chinese Academy of Sciences, Beijing 100083, China

Chin. Opt. Lett., 2010, 08(05): pp.502-504-3

Topic:Lasers and laser optics
Keywords(OCIS Code): 140.3410  140.5960  

Mode radiation loss for microdisk resonators with pedestals is investigated by three-dimensional (3D) finite-difference time-domain (FDTD) technique. For the microdisk with a radius of 1 \mu m, a thickness of 0.2 \mu m, and a refractive index of 3.4, on a pedestal with a refractive index of 3.17, the mode quality (Q) factor of the whispering-gallery mode (WGM) quasi-TE7;1 first increases with the increase of the radius of the pedestal, and then quickly decreases as the radius is larger than 0.75 \mu m. The mode radiation loss is mainly the vertical radiation loss induced by the mode coupling between the WGM and vertical radiation mode in the pedestal, instead of the scattering loss around the perimeter of the round pedestal. The WGM can keep the high Q factor when the mode coupling is forbidden.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (305 KB)


Posted online:

Get Citation: Yuede Yang, Shijiang Wang, Yongzhen Huang, "Investigation of mode radiation loss for microdisk resonators with pedestals by FDTD technique," Chin. Opt. Lett. 08(05), 502-504-3(2010)

Note: This work was supported by the National Natural Science Foundation of China (Nos. 60777028, 60723002, and 60838003), the Major State Basic Research Program (No. 2006CB302804), and the Project of National Lab for Tsinghua Information Technologies.


1. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, Appl. Phys. Lett. 60, 289 (1992).

2. M. Fujita, A. Sakai, and T. Baba, IEEE J. Sel. Top. Quantum Electron. 5, 673 (1999).

3. B. J. Li and P. L. Liu, IEEE J. Quantum Electron. 32, 1583 (1996).

4. X. Luo and A. W. Poon, Chin. Opt. Lett. 7, 296 (2009).

5. Z. Yong, H. Fu, X. Qiao, Y. Li, D. Zhao, and P. Ge, Acta Opt. Sin. (in Chinese) 29, 1070 (2009).

6. J. Niegemann, W. Pernice, and K. Busch, J. Opt. A: Pure Appl. Opt. 11, 114015 (2009).

7. A. I. Nosich, E. I. Smotrova, S. V. Boriskina, T. M. Benson, and P. Sewell, Opt. Quantum Electron. 39, 1253 (2007).

8. Y. D. Yang, Y. Z. Huang, and Q. Chen, Phys. Rev. A 75, 013817 (2007).

9. Y. Z. Huang and Y. D. Yang, J. Lightwave Technol. 26, 1411 (2008).

10. W. H. Guo, W. J. Li, and Y. Z. Huang, IEEE Microw. Wirel. Compon. Lett. 11, 223 (2001).

11. Q. Chen and Y. Z. Huang, J. Opt. Soc. Am. B 23, 1287 (2006).

Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备15018463号-7 公安备案沪公网安备 31011402005522号