2018-11-16 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 06 , Vol. 12 , 2014    10.3788/COL201412.060022


Theoretical bounds on Fresnel compressive holography performance (Invited Paper)
Adrian Stern1, Yair Rivenson2
1 Department of Electro-Optics Engineering, [Ben-Gurion University of the Negev], Beer-Sheva 84105, Israel
2 Faculty of Engineering, [Bar-Ilan University], 5290, Ramat-Gan, Israel

Chin. Opt. Lett., 2014, 12(06): pp.060022

DOI:10.3788/COL201412.060022
Topic:Computer generated hologram
Keywords(OCIS Code): 090.1995  110.1758  200.2610  

Abstract
During the last years the theory of compressive sensing has found significant utility in the digital holography realm. In this letter we summarize and extend our previous theoretical results which determine the relation between the number of Fresnel samples required on the object illumination type, illumination wavelength, imaging geometry and sensor's size and resolution.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (130 KB)

Share:


Received:2014/4/3
Accepted:2014/5/15
Posted online:2014/5/30

Get Citation: Adrian Stern, Yair Rivenson, "Theoretical bounds on Fresnel compressive holography performance (Invited Paper)," Chin. Opt. Lett. 12(06), 060022(2014)

Note:



References

1. T. Kreis, Handbook of Holographic Interferometry, 1st ed. (Wiley-VCH, Weinheim, 2004), Chap. 3.

2. E. Cand`es and M. Wakin, IEEE Signal Processing Magazine 25, 21 (2008).

3. Y. C. Eldar and G. Kutyniok, Compressed Sensing: Theory and Applications (Cambridge University Press, 2012).

4. M. Elad, Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing (Springer, 2010).

5. Y. Rivenson and A. Stern, Opt. Lett. 36, 3365 (2011).

6. Y. Rivenson, A. Stern, and B. Javidi, Appl. Opt. 52, A423 (2013).

7. A. M. Bruckstein, D. L. Donoho, and M. Elad, SIAM Review 51, 34 (2009).

8. D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo and F. Marinho, Opt. Commun. 164, 233 (1999).

9. Y. Rivenson and A. Stern, IEEE Signal Processing Lett. 16, 449 (2009).

10. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

11. Y. Rivenson, A. Stern, and B. Javidi, IEEE/OSA Disp. Techol. J. 6, 506 (2010).

12. Y. Rivenson, A. Rot, S. Balber, A. Stern, and J. Rosen, Opt. Lett. 37, 1757 (2012).

13. Y. Liu, L. Tian, J. Lee, H. Huang, M. Triantafyllou, and G. Barbastathis, Opt. Lett. 37, 3357 (2012).

14. L. Denis, D. Lorenz, E. Thiebaut, C. Fournier, and D. Trede, Opt. Lett. 34, 3475 (2009).

15. D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, Opt. Express 17, 13040 (2009).

16. Y. Rivenson, A. Stern, and J. Rosen, Opt. Lett. 38, 2509 (2013).

17. A. F. Coskun, I. Sencan, T.-W. Su, and A. Ozcan, Opt. Express 18, 10510 (2010).

18. Y. Rivenson, A. Stern, and J. Rosen, Opt. Express 19, 6109 (2011).

19. G. Nehmetallah and P. Banerjee, Adv. Opt. Photon. 4, 472 (2012).

20. Y. Rivenson, A. Stern, and J. Rosen, Opt. Lett. 38, 2509 (2013).


Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备15018463号-7 公安备案沪公网安备 31011402005522号