2019-02-19 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 07 , Vol. 12 , 2014    10.3788/COL201412.070601

Blocking probability analysis model for flexible spectrum optical networks
Yongli Zhao, Jie Zhang
State Key Laboratory of Information Photonics and Optical Communications, [Beijing University of Posts and Telecommunications], Beijing 100876, China.

Chin. Opt. Lett., 2014, 12(07): pp.070601

Topic:Fiber optics and optical communications
Keywords(OCIS Code): 060.4510  060.4250  060.4254  060.4256  

Compared to the traditional wavelength division multiplexing (WDM) optical networks with rigid and coarse granularities, flexible spectrum optical networks have high spectrum efficiency, which can support the service with various bandwidth requirements, such as sub and super channel. Among all network performance parameters, blocking probability is an important parameter for the performance evaluation and network planning in circuit-based optical networks including flexible spectrum optical networks. We propose an analytical method of blocking probability computation for flexible spectrum optical networks in this letter through mathematical analysis and theoretical derivation. Two blocking probability models are built respectively based on whether considering spectrum consecutiveness or not. Numerical results validate our proposed blocking probability models under different link capacity and traffic loads.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (216 KB)


Posted online:2014/6/20

Get Citation: Yongli Zhao, Jie Zhang, "Blocking probability analysis model for flexible spectrum optical networks," Chin. Opt. Lett. 12(07), 070601(2014)

Note: This work was supported by the National "863" Program of China (No. 2012AA011301), the National "973" Program of China (No. 2010CB328204), the National Natural Science Foundation of China (Nos. 61271189 and 61201154), the Research Fund for the Doctoral Program of Higher Education of China (No. 20120005120019), the Beijing Youth Elite Project for Universities, the Fundamental Research Funds for the Central Universities (No.2013RC1201), and the Fund of State Key Laboratory of Information Photonics and Optical Communications (BUPT).


1. M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, IEEE Commun. Mag. 47, 66 (2009).

2. K. Christodoulopoulos, I. Tomkos, and E. Varvarigos, in Proceedings of OFC/NFOEC OTul5 (2011).

3. Y. Wang, J. Zhang, Y. Zhao, J. Liu, and W. Gu, Chin. Opt. Lett. 10, S10606 (2012).

4. T. Takagi, H. Hasegawa, K. Sato, Y. Sone, A. Hirano, and M. Jinno, in Proceedings of OFC OTul7 (2011).

5. H. Yang, Y. Zhao, J. Zhang, W. Gu, S. Wang, Y. Lin, and Y. Lee, Chin. Opt. Lett. 11, 070605 (2013).

6. K.-J. Lu, G.-X. Xiao, and I. Chlmatac, in Proceedings of ICC 2912 (2002).

7. R. Ramaswami and K. Sivarajan, in Proceedings of INFOCOM 970 (1994).

8. Z. Zhang and A. Acampora, in Proceedings of INFOCOM 534 (1994).

9. A. Girard, IEEE/ACM Trans. Netw. 3, 489 (1995).

10. H. Harai, M. Murata, and H. Miyahara, in Proceedings of INFOCOM 516 (1997).

11. A. Mokhtar and M. Azizoglu, IEEE/ACM Trans. Netw. 6, 197 (1998).

12. Y. Zhao, J. Zhang, D. Han, X. Zhang, Y. Yao, W. Gu, and Y. Ji, IET Commun. 3, 1716 (2009).

13. C. Xin, C. Qiao, and S. Dixit, Proc. SPIE 5285, 91(2003).

14. H. Waldman, D. R. Campelo, and R. C. Almeida, Jr, Proc. SPIE 5285, 324 (2003).

15. A. Alyatama, J. Wireless Opt. Commun. 4, 75 (2007).

16. A. Alyatama, Computer Networks 49, 727 (2005).

17. A. A. Frederick, Bell Syst. Technol. J. 59, 805 (1980).

Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备15018463号-7 公安备案沪公网安备 31011402005522号