Synthesis of ultrafine titania nano-cages by pulsed laser ablation of Ti/Al alloy in ammonium hydroxide
Dameng Wang1,
Ming Chen1,
Xiangdong Liu1,
Xueping Gao2
1 School of Physics and State Key Laboratory of Crystal Materials, [Shandong University], Jinan 250100, China
2 School of Materials Science and Engineering, [Shandong University], Jinan 250061, China
Chin. Opt. Lett.,
2015,
13(08):
pp.081404
DOI:10.3788/COL201513.081404Topic:Lasers and laser optics
Keywords(OCIS Code):
140.3440 350.3850
Abstract
A simple and versatile strategy is designed to successfully fabricate ultrafine TiO2 nano-cages based on the rapid decomposition reaction between amphoteric hydroxide and ammonia solution by pulsed laser ablation of Ti/Al alloy in liquid. With the ammonia concentration (Vammonia:Vwater, where V is volume) increasing from 1:10 to 1:4, the diameter and shell thickness of quasi-spherical TiO2 nano-cages substantially decrease from 300 and 60 nm to 9.2 and 2.8 nm, respectively. The obtained results have significant implications for obtaining insight into the properties of the TiO2 porous nano-cages, offering the basis for further fabrication of other nano-cages.
Copyright: © 2003-2012 . This is an open-access article distributed under the terms
of the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original author and source are credited.
View
PDF (591 KB)
Received:2015/4/13
Accepted:2015/6/19
Posted online:2015/7/7
Get Citation:
Dameng Wang, Ming Chen, Xiangdong Liu, Xueping Gao, "Synthesis of ultrafine titania nano-cages by pulsed laser ablation of Ti/Al alloy in ammonium hydroxide," Chin. Opt. Lett.
13(08),
081404(2015)
Note:
This work was supported by the National Natural Science Foundation of China (Nos. 11105085, 11275116, and 11375108), the Excellent Youth and Middle Age Scientists Fund of Shandong Province (No. BS 2012CL024), and the Fundamental Research Funds of Shandong University (No. 2015JC007).
References
1. M. C. Tsai, M. H. Yang, Y. W. Chang, J. K. Tzeng, C. Y. Lee, H. T. Chiu, H. C. Chen, and I. N. Lin, Mater. Chem. Phys. 143, 60 (2013).
2. J. G. Yu, Y. R. Su, and B. Cheng, Adv. Funct. Mater. 17, 1984 (2007).
3. Y. Gu, C. Cai, Q. Feng, and Y. Li, Chin. Opt. Lett. 12, 091602 (2014).
4. T. Harada, H. Murotani, S. Matumoto, and H. Honda, Chin. Opt. Lett. 11, S10303 (2013).
5. A. Nath, S. S. Laha, and A. Khare, Appl. Surf. Sci. 257, 3118 (2011).
6. A. Umar and Y. B. Hahn, Appl. Surf. Sci. 254, 3339 (2008).
7. Y. Xue, J. Lin, Y. Fan, A. Elsanousi, X. Xu, J. Mi, J. Li, X. Zhang, Y. Lu, T. Zhang, and C. Tang, Mater. Chem. Phys. 143, 446 (2013).
8. A. Pan, R. Yu, S. Xie, Z. Zhang, C. Jin, and B. Zou, J. Cryst. Growth 282, 165 (2005).
9. A. Thankappan, S. Thomas, and V. P. N. Nampoori, Chin. Opt. Lett. 11, 101801 (2013).
10. S. Li, M. Chen, and X. D. Liu, Opt. Express 22, 18707 (2014).
11. Z. J. Yan, R. Q. Bao, and D. B. Chrisey, Chem. Phys. Lett. 497, 205 (2010).
12. Z. J. Yan, R. Q. Bao, C. M. Busta, and D. B. Chrisey, Nanotechnology 22, 265610 (2011).
13. Z. J. Yan, R. Q. Bao, Y. Huang, and D. B. Chrisey, J. Phys. Chem. C 114, 11370 (2010).
14. J. Yang, F. F. Luo, T. S. Kao, X. Li, G. Ho, J. H. Teng, X. G. Luo, and M. H. Hong, Light Sci. Appl. 3, e185 (2014).
15. J. Yang, J. B. Li, Q. H. Gong, J. H. Teng, and M. H. Hong, Nanotechnology 25, 465707 (2014).
16. C. H. Liu, M. H. Hong, Y. Zhou, G. X. Chen, M. M. Saw, and A. T. S. Hor, Phys. Scr. T129, 326 (2007).
17. F. F. Luo, Y. C. Guan, W. Ong, Z. R. Du, G. Ho, F. P. Li, S. F. Sun, G. Lim, and M. H. Hong, Opt. Express. 22, 23875 (2014).