2018-10-16 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 06 , Vol. 16 , 2018    10.3788/COL201816.060605


Broadband photonic ADC for microwave photonics-based radar receiver
Jiaqian Yang, Shangyuan Li, Xuedi Xiao, Dexin Wu, Xiaoxiao Xue, and Xiaoping Zheng
Tsinghua National Laboratory for Information Science and Technology, Department of Electronic Engineering, [Tsinghua University], Beijing 100084, China

Chin. Opt. Lett., 2018, 16(06): pp.060605

DOI:10.3788/COL201816.060605
Topic:Fiber optics and optical communication
Keywords(OCIS Code): 060.5625  320.5520  

Abstract
A broadband photonic analog-to-digital converter (ADC) for X-band radar applications is proposed and experimentally demonstrated. An X-band signal with arbitrary waveform and a bandwidth up to 2 GHz can be synchronously sampled and processed due to the optical sampling structure. In the experiment, the chirp signal centered at 9 GHz with a bandwidth of 1.6 GHz is sampled and down-converted with a signal-to-noise ratio of 7.20 dB and an improved noise figure. Adopting the photonic ADC in the radar receiver and the above signal as the transmitted radar signal, an X-band inverse synthetic aperture radar system is set up, and the range and cross-range resolutions of 9.4 and 8.3 cm are obtained, respectively.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (464 KB)

Share:


Received:2018/2/9
Accepted:2018/4/19
Posted online:2018/5/28

Get Citation: Jiaqian Yang, Shangyuan Li, Xuedi Xiao, Dexin Wu, Xiaoxiao Xue, and Xiaoping Zheng, "Broadband photonic ADC for microwave photonics-based radar receiver," Chin. Opt. Lett. 16(06), 060605(2018)

Note: This work was supported in part by the National Natural Science Foundation of China (NSFC) (Nos. 61690191, 61690192, 61420106003, and 61621064), Chuanxin Funding, and Beijing Natural Science Foundation (No. 4172027).



References

1. L. Francesco, F. Scotti, P. Ghelfi, A. Bogoni, and S. Pinna, in 2013 IEEE Radar Conference (RADAR) (2013).

2. L. Pierno, M. Dispenza, G. Tonelli, A. Bogoni, P. Ghelfi, and L. Poti, in 2008 IEEE International Meeting on Microwave Photonics Jointly Held with the 2008 Asia-Pacific Microwave Photonics Conference, MWP2008/APMP2008 (2008), p.?236.

3. F. Laghezza, F. Scotti, P. Ghelfi, and A. Bogoni, J. Lightwave Technol. 32, 2896 (2014).

4. P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, Nature 507, 341 (2014).

5. R. Li, W. Li, M. Ding, Z. Wen, Y. Li, L. Zhou, S. Yu, T. Xing, B. Gao, Y. Luan, Y. Zhu, P. Guo, Y. Tian, and X. Liang, Opt. Express 25, 14334 (2017).

6. X. Xiao, S. Li, B. Chen, X. Yang, D. Wu, X. Xue, X. Zheng, and B. Zhou, in CLEO: Science and Innovations (2017), paper JW2A-144.

7. F. Zhang, Q. Guo, Z. Wang, P. Zhou, G. Zhang, J. Sun, and S. Pan, Opt. Express, 25, 16274 (2017).

8. F. Zhang, Q. Guo, and S. Pan, Sci. Rep. 7, 13848 (2017).

9. F. Zhang, Q. Guo, Y. Zhang, Y. Yao, P. Zhou, D. Zhu, and S. Pan, Chin. Opt. Lett. 15, 112801 (2017).

10. T. Long, Y. Wang, and T. Zeng, Electron. Lett. 46, 720 (2010).

11. R. H. Walden, ed., Wiley Encyclopedia of Computer Science and Engineering (Wiley, 2008).

12. M. A. Piqueras, P. Villalba, J. Puche, and J. Marti, in 2011 IEEE International Conference on Microwaves, Communications, Antennas and Electronics Systems (COMCAS) (2011) p.?1.

13. R H. Walden, in IEEE J. Sel. Areas Commun. 17, 539 (1999).

14. A. Khilo, S. J. Spector, M. E. Grein, A. H. Nejadmalayeri, C. W. Holzwarth, M. Y. Sander, M. S. Dahlem, M. Y. Peng, M. W. Geis, N. A. DiLello, J. U. Yoon, A. Motamedi, J. S. Orcutt, J. P. Wang, C. M. Sorace-Agaskar, M. A. Popovi?, J. Sun, G.-R. Zhou, H. Byun, J. Chen, J. L. Hoyt, H. I. Smith, R. J. Ram, M. Perrott, T. M. Lyszczarz, E. P. Ippen, and F. X. K?rtner, Opt. Express 20, 4454 (2012).

15. J. E. Daniel, A. O. J. Wiberg, N. Alic, and S. Radic, J. Lightwave Technol. 33, 2256 (2015).

16. J. Capmany, and D. Novak, 319 (2007).

17. J. Yao, J. Lightwave Technol. 27, 314 (2009).

18. R. A. Minasian, IEEE Trans. Microwave Theory Tech. 54, 832 (2006).

19. H. Zhang, W. Zou, G. Yang, and J. Chen, Chin. Opt. Lett. 14, 030602 (2016).

20. G. Yang, W. Zou, L. Yu, K. Wu, and J. Chen, Opt. Express 24, 24061 (2016).

21. R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, Opt. Lett. 35, 3234 (2010).

22. T. R. Clark, M. Currie, and P. J. Matthews, J. Lightwave Technol. 19, 172 (2001).

23. H. W. Erwin, J. Lightwave Technol. 30, 3580 (2012).


Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备05015387