2018-10-18 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 07 , Vol. 16 , 2018    10.3788/COL201816.071202


Faraday-rotation self-interference method for electron beam duration measurement in the laser wakefield accelerator
Jiaqi Liu1;2, Wentao Li1;3, Jiansheng Liu1;4, Wentao Wang1, Rong Qi1, Zhijun Zhang1, Changhai Yu1, Zhiyong Qin1;2, Ming Fang1;2, Ke Feng1;2, Ying Wu1;2, Cheng Wang1, and Ruxin Li1;4;5
1 [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences], Shanghai 201800, China
2 [University of Chinese Academy of Sciences], Beijing 100049, China
3 [Department of Physics, SUPA and University of Strathclyde], Glasgow G4 0NG, UK
4 IFSA Collaborative Innovation Center, [Shanghai Jiao Tong University], Shanghai 20024 0, China
5 School of Physical Science and Technology, [Shanghai Tech University], Shanghai 201210, China

Chin. Opt. Lett., 2018, 16(07): pp.071202

DOI:10.3788/COL201816.071202
Topic:Instrumentation, measurement and metrology
Keywords(OCIS Code): 120.5410  350.5400  120.3180  280.5395  

Abstract
Real-time single-shot measurement of the femtosecond electron beam duration in laser wakefield accelerators is discussed for both experimental design and theoretical analysis that combines polarimetry and interferometry. The probe pulse polarization is rotated by the azimuthal magnetic field of the electron beam and then introduced into a Michelson-type interferometer for self-interference. The electron beam duration is obtained from the region size of the interference fringes, which is independent of the pulse width of the probe laser. Using a larger magnification system or incident angle, the measurement resolution can be less than 1 fs.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (590 KB)

Share:


Received:2018/4/20
Accepted:2018/5/21
Posted online:2018/6/29

Get Citation: Jiaqi Liu, Wentao Li, Jiansheng Liu, Wentao Wang, Rong Qi, Zhijun Zhang, Changhai Yu, Zhiyong Qin, Ming Fang, Ke Feng, Ying Wu, Cheng Wang, and Ruxin Li, "Faraday-rotation self-interference method for electron beam duration measurement in the laser wakefield accelerator," Chin. Opt. Lett. 16(07), 071202(2018)

Note: This work was supported by the National Natural Science Foundation of China (Nos. 11127901, 11425418, 11505263, and 61521093), the Strategic Priority Research Program (B) (No. XDB16), Shanghai Sailing Program (Nos. 17YF1421100 and 18YF1426000), the Youth Innovation Promotion Association CAS, and the State Key Laboratory Program of the Chinese Ministry of Science and Technology.



References

1. F. S. Tsung, R. Narang, W. B. Mori, C. Joshi, R. A. Fonseca, and L. O. Silva, Phys. Rev. Lett. 93, 185002 (2004).

2. W. P. Leemans, B. Nagler, A. J. Gonsalves, C. Toth, K. Nakamura, C. G. R. Geddes, E. Esarey, C. B. Schroeder, and S. M. Hooker, Nat. Phys. 2, 696 (2006).

3. S. P. D. Mangles, C. D. Murphy, Z. Najmudin, A. G. R. Thomas, J. L. Collier, A. E. Dangor, E. J. Divall, P. S. Foster, J. G. Gallacher, C. J. Hooker, D. A. Jaroszynski, A. J. Langley, W. B. Mori, P. A. Norreys, F. S. Tsung, R. Viskup, B. R. Walton, and K. Krushelnick, Nature 431, 535 (2004).

4. X. Wang, R. Zgadzaj, N. Fazel, Z. Li, S. A. Yi, X. Zhang, W. Henderson, Y. Y. Chang, R. Korzekwa, H. E. Tsai, C. H. Pai, H. Quevedo, G. Dyer, E. Gaul, M. Martinez, A. C. Bernstein, T. Borger, M. Spinks, M. Donovan, V. Khudik, G. Shvets, T. Ditmire, and M. C. Downer, Nat. Commun. 4, 1988 (2013).

5. W. P. Leemans, A. J. Gonsalves, H. S. Mao, K. Nakamura, C. Benedetti, C. B. Schroeder, C. Toth, J. Daniels, D. E. Mittelberger, S. S. Bulanov, J. L. Vay, C. G. R. Geddes, and E. Esarey, Phys. Rev. Lett. 113, 245002 (2014).

6. X. L. Xu, C. H. Pai, C. J. Zhang, F. Li, Y. Wan, Y. P. Wu, J. F. Hua, W. Lu, W. An, P. Yu, C. Joshi, and W. B. Mori, Phys. Rev. Lett. 117, 034801 (2016).

7. M. Mirzaie, S. Li, M. Zeng, N. A. M. Hafz, M. Chen, G. Y. Li, Q. J. Zhu, H. Liao, T. Sokollik, F. Liu, Y. Y. Ma, L. M. Chen, Z. M. Sheng, and J. Zhang, Sci. Rep. 5, 14659 (2015).

8. W. T. Wang, W. T. Li, J. S. Liu, Z. J. Zhang, R. Qi, C. H. Yu, J. Q. Liu, M. Fang, Z. Y. Qin, C. Wang, Y. Xu, F. X. Wu, Y. X. Leng, R. X. Li, and Z. Z. Xu, Phys. Rev. Lett. 117, 124801 (2016).

9. K. Nakajima, Proc. Japn. Acad. Ser. B 91, 223 (2015).

10. K. Ta Phuoc, S. Corde, C. Thaury, V. Malka, A. Tafzi, J. P. Goddet, R. C. Shah, S. Sebban, and A. Rousse, Nat. Photonics 6, 308 (2012).

11. G. Berden, S. P. Jamison, A. M. MacLeod, W. A. Gillespie, B. Redlich, and A. F. G. van der Meer, Phys. Rev. Lett. 93, 114802 (2004).

12. M. Geissler, J. Schreiber, and J. Meyer-ter-Vehn, New J. Phys. 8, 186 (2006).

13. A. D. Debus, M. Bussmann, U. Schramm, R. Sauerbrey, C. D. Murphy, Z. Major, R. Hoerlein, L. Veisz, K. Schmid, J. Schreiber, K. Witte, S. P. Jamison, J. G. Gallacher, D. A. Jaroszynski, M. C. Kaluza, B. Hidding, S. Kiselev, R. Heathcote, P. S. Foster, D. Neely, E. J. Divall, C. J. Hooker, J. M. Smith, K. Ertel, A. J. Langley, P. Norreys, J. L. Collier, and S. Karsch, Phys. Rev. Lett. 104, 084802 (2010).

14. O. Lundh, J. Lim, C. Rechatin, L. Ammoura, A. Ben-Ismail, X. Davoine, G. Gallot, J. P. Goddet, E. Lefebvre, V. Malka, and J. Faure, Nat. Phys. 7, 219 (2011).

15. H. Kotaki, K. Kawase, Y. Hayashi, M. Mori, M. Kando, J. K. Koga, and S. V. Bulanovt, J. Phys. Soc. Jpn. 84, 074501 (2015).

16. A. Buck, M. Nicolai, K. Schmid, C. M. S. Sears, A. Saevert, J. M. Mikhailova, F. Krausz, M. C. Kaluza, and L. Veisz, Nat. Phys. 7, 543 (2011).

17. M. S. Bigelow, N. N. Lepeshkin, H. Shin, and R. W. Boyd, J. Phys. Condens. Mat. 18, 3117 (2006).

18. J. A. Stamper, and B. H. Ripin, Phys. Rev. Lett. 34, 138 (1975).


Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备05015387