2018-12-14 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 07 , Vol. 16 , 2018    10.3788/COL201816.071401


Optical property measurements of 235 mm large-scale Ti:sapphire crystal
He Cao1;3, Zebiao Gan1, Xiaoyan Liang1, Lianghong Yu1, Wenqi Li1;3, Zhen Guo1;3, Pei Huang1;3, Jianye Wang1;3, Min Xu2, and Yin Hang2
1 State Key Laboratory of High Field Laser Physics, [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences], Shanghai 201800, China
2 Key Laboratory of Materials for High Power Laser, [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences], Shanghai 201800, China
3 [University of Chinese Academy of Sciences, Chinese Academy of Sciences], Beijing 100049, China

Chin. Opt. Lett., 2018, 16(07): pp.071401

DOI:10.3788/COL201816.071401
Topic:Lasers and laser optics
Keywords(OCIS Code): 140.3280  140.3590  140.5560  140.7090  

Abstract
A Ti:sapphire crystal with a diameter of 235 mm and thickness of 72 mm was grown by the heat exchange method (HEM). The absorption intensity of the crystal at 532 nm averaged at 91%. The figures of merit (FOMs) at different positions of the crystal were measured and the FOM value in the central region was found to reach 90. The transmittance laser beam was intact with no obvious distortions and had only a small deformation compared with the incident laser beam. A small-signal amplification experiment was performed on the Ti:sapphire crystal and a gain of more than 6 times was achieved with a pump energy density of 1.98 J/cm2. These tests indicate that the 235 mm Ti:sapphire crystal has excellent optical qualities and will further improve the energy output of a 10 PW laser system.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (481 KB)

Share:


Received:2018/3/22
Accepted:2018/5/8
Posted online:2018/6/25

Get Citation: He Cao, Zebiao Gan, Xiaoyan Liang, Lianghong Yu, Wenqi Li, Zhen Guo, Pei Huang, Jianye Wang, Min Xu, and Yin Hang, "Optical property measurements of 235 mm large-scale Ti:sapphire crystal," Chin. Opt. Lett. 16(07), 071401(2018)

Note: This work was supported by the National Natural Science Foundation of China (Nos. 61775223 and 51502321), the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB1603), and the Shanghai Scientific Research Project (Nos. 16JC1420600 and 16DZ0503900).



References

1. R. X. Li, Y. X. Leng, and Z. Z. Xu, Phys. 44, 509 (2015).

2. T. Miyakoshi, K. A. Tanaka, A. E. Dangor, Y. Toyama, and Y. Kitagawa, Nature 412, 798 (2001).

3. A. Baltuska, T. Udem, M. Uiberacker, V. S. Yakovlev, and R. Holzwarth, Nature 421, 611 (2003).

4. A. H. Zewail, J. Phys. Chem. A 104, 5660 (2000).

5. R. L. Kodama, Nature 418, 933 (2002).

6. D. Strickland, and G. Mourou, Opt. Commun. 56, 219 (1985).

7. J. L. Si, J. Xu, G. J. Zhao, G. Q. Zhou, H. J. Li, J. Y. Wang, and P. Z. Deng, Chin. J. Lasers 31, 381 (2004).

8. C. Stelian, G. Alombert-Goget, G. Sen, N. Barthalay, and K. Lebbouet, Opt. Mater. 69, 73 (2017).

9. D. B. Joyce, and F. Schmid, J. Cryst. Growth 312, 1138 (2009).

10. Y. Z. Zhou, “The TGT growth devices for high-temperature crystals,” China Patent?85100534.9 (Nov.?24, 1988).

11. S. V. Nizhankovskiy, Y. A. Dan’ko, E. V. Krivonosov, and V. M. Puzikoval, Inorg. Mater. 46, 35 (2010).

12. K. J. Ning, Y. C. Liu, J. Ma, L. H. Lian, X. Y. Liang, D. Y. Tang, R. X. Li, and Y. Hang, Cryst. Eng. Com. 17, 2801 (2015).

13. Z. B. Gan, X. Y. Liang, L. H. Yu, J. Q. Hong, M. Xu, Y. Hang, and R. X. Li, Chin. Opt. Lett. 15, 091401 (2017).

14. Z. B. Gan, L. H. Yu, S. Li, C. Wang, X. Y. Liang, Y. Q. Liu, W. Q. Li, Z. Guo, Z. T. Fan, X. L. Yuan, L. Xu, Z. Z. Liu, Y. Xu, J. Lun, H. H. Lu, D. J. Yin, Y. X. Leng, R. X. Li, and Z. Z. Xu, Opt. Express 25, 5169 (2017).

15. D. N. Papadopoulos, J. P. Zou, C. Le Blanc, G. Cheriaux, P. Georges, F. Druon, G. Mennerat, P. Ramirez, L. Martin, A. Freneaux, A. Beluze, N. Lebas, P. Monot, F. Mathieu, and P. Audebert, High Power Laser Sci. Eng. 4, e34 (2016).

16. C. Hernandez-Gomez, S. P. Blake, O. Chekhlov, R. J. Clarke, A. M. Dunne, M. Galimberti, S. Hancock, R. Heathcote, P. Holligan, A. Lyachev, P. Matousek, I. O. Musgrave, D. Neely, P. A. Norreys, I. Ross, Y. Tang, T. B. Winstone, and B. E. Wyborn, J. Phys. 244, 032006 (2010).

17. P. Yan, L. Su, B. Y. Ding, Y. Yang, and G. W. Zhang, Opto-Electron. Eng. 24, 46 (1997).

18. X. C. Zhang, J. L. Si, M. Xu, X. Y. Liang, and Y. X. Chu, Chin. J. Lasers 41, 0506001 (2014).

19. R. L. Aggarwal, A. Sanchez, and M. M. Stuppi, J. Quantum Electron. 24, 1003 (1988).


Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备15018463号-7 公安备案沪公网安备 31011402005522号