2018-10-20 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 07 , Vol. 16 , 2018    10.3788/COL201816.072501


Optical properties and dynamic process in metal ions doped on CdSe quantum dots sensitized solar cells
Ha Thanh Tung1, Dang Huu Phuc2;3
1 Institute of Research and Development, [Duy Tan University], Da Nang, Vietnam
2 Theoretical Physics Research Group, Advanced Institute of Materials Science, [Ton Duc Thang University], Ho Chi Minh City, Vietnam
3 Faculty of Applied Sciences, [Ton Duc Thang University], Ho Chi Minh City, Vietnam

Chin. Opt. Lett., 2018, 16(07): pp.072501

DOI:10.3788/COL201816.072501
Topic:Optoelectronics
Keywords(OCIS Code): 250.4745  260.2160  

Abstract
In recent years, the nanostructure for solar cells have attracted considerable attention from scientists as a result of a promising candidate for low cost devices. In this work, quantum dots sensitized solar cells with effective performance based on a co-sensitized CdS/CdSe:Mn2+ (or Cu2+) nanocrystal, which was made by successive ionic layer absorption and reaction, are discussed. The optical, physical, chemical, and photovoltaic properties of quantum dots sensitized solar cells were sensitized to Mn2+ and Cu2+ dopants. Therefore, the short current (JSC) of the quantum dot sensitized solar cells is boosted dramatically from 12.351 mA/cm2 for pure CdSe nanoparticles to 18.990 mA/cm2 for Mn2+ ions and 19.915 mA/cm2 for Cu2+ ions. Actually, metal dopant extended the band gap of pure CdSe nanoparticles, reduced recombination, enhanced the efficiency of devices, and improved the charge transfer and collection. In addition, Mn2+ and Cu2+ dopants rose to the level of the conduction band of pure CdSe nanoparticles, which leads to the reduction of the charge recombination, enhances the light-harvesting efficiency, and improves the charge diffusion and collection. The results also were confirmed by the obtained experimental data of photoluminescence decay and electrochemical impedance spectroscopy.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (910 KB)

Share:


Received:2018/3/14
Accepted:2018/5/8
Posted online:2018/7/2

Get Citation: Ha Thanh Tung, Dang Huu Phuc, "Optical properties and dynamic process in metal ions doped on CdSe quantum dots sensitized solar cells," Chin. Opt. Lett. 16(07), 072501(2018)

Note:



References

1. M. C. Beard, J. Phys. Chem. Lett. 2, 1282 (2011).

2. P. V. Kamat, J. Phys. Chem. C 112, 18737 (2008).

3. A. Nozik, J. Phys. E 14, 115 (2002).

4. S. S. Mali, S. K. Desai, S. S. Kalagi, C. A. Betty, P. N. Bhosale, R. S. Devan, Y.-R. R. Mad, and P. S. Patila, Dalton Trans. 41, 6130 (2012).

5. J. Jiao, Z.-J. Zhou, W.-H. Zhou, and S.-X. Wu, Mater. Sci. Semicond. Process 16, 435 (2013).

6. N. P. Benehkohal, V. González-Pedro, P. P. Boix, S. Chavhan, R. Tena-Zaera, G. P. Demopoulos, and I. Mora-Seró, J. Phys. Chem. 1, 16391 (2012).

7. Q. Zhang, Y. Zhang, S. Huang, X. Huang, Y. Luo, Q. Meng, and D. Li, Electrochem. Commun. 12, 327 (2010).

8. V. González-Pedro, X. Xu, I. Mora-Seró, and J. Bisquert, ACS Nano 4, 5783 (2010).

9. Z. Yang, and H.-T. Chang, Sol. Energy Mater. Sol. Cells 94, 2046 (2010).

10. N. Balisa, V. Dracopoulos, K. Bourikas, and P. Lianos, Electrochim. Acta 91, 246 (2013).

11. D. H. Jara, S. Joon Yoon, K. G. Stamplecoskie, and P. V. Kamat, Chemi. Mater. 26, 7221 (2014).

12. S. Woo Jung, J.-H. Kim, H. Kim, C.-J. Choi, and K.-S. Ahn, J. Curr. Appl. Phys. 12, 1459 (2012).

13. T. R. Ravindran, A. K. Arora, B. Balamuruga, and B. R. Mehta, Nanostruct. Mater. 11, 603 (1999).

14. T. Lopez-Luke, A. Wolcott, L.-P. Xu, S. Chen, Z. Wen, J. Li, E. D. L. Rosa, and J. Z. Zhang, J. Phys. Chem. C 112, 1282 (2008).

15. I. Mora-Sero, S. Gimenez, T. Moehl, F. Fabregat-Santiago, T. Lana-Villareal, R. Gomez, and J. Bisquert, Nanotechnology 19, 424007 (2008).

16. Q. Shen, J. Kobayashi, L. J. Diguna, and T. Toyoda, J. Appl. Phys. 103, 084304 (2008).

17. J.-W. Lee, D.-Y. Son, T. K. Ahn, H.-W. Shin, I. Y. Kim, S.-J. Hwang, M. J. Ko, S. Sul, H. Han, and N.-G. Park, Sci. Rep. 3, 1050 (2013).

18. P. K. Santra, and P. V. Kamat, J. Am. Chem. Soc. 134, 2508 (2012).

19. L. Zhu, T. X. Pan, and Z. Sun, ACS Appl. Mater. Interfaces 3, 3146 (2011).

20. Y. H. Lee, S. H. Im, J. A. Chang, J. H. Lee, and S. I. Seok, Org. Electron. 13, 975 (2012).

21. M. A. Hossain, J. R. Jennings, C. Shen, J. H. Pan, Z. Y. Koh, N. Mathews, and Q. Wang, J. Mater. Chem. 22, 16235 (2012).

22. Z. Pan, K. Zhao, J. Wang, H. Zhang, Y. Feng, and X. Zhong, ACS Nano 7, 5215 (2013).

23. J. G. Radich, N. R. Peeples, P. K. Santra, and P. V. Kamat, J. Phys. Chem. C 118, 16463 (2014).

24. J. Wang, I. Mora-Sero, Z. Pan, K. Zhao, H. Zhang, Y. Feng, G. Yang, X. Zhong, and J. Bisquert, J. Am. Chem. Soc. 135, 15913 (2013).

25. K. Yan, L. Zhang, J. Qiu, Y. Qiu, Z. Zhu, J. Wang, and S. Yang, J. Am. Chem. Soc. 135, 9531 (2013).

26. Q. Dai, E. M. Sabio, W. Wang, and J. Tang, Appl. Phys. Lett. 104, 183901 (2014).

27. T. Debnath, P. Maity, S. Maiti, and H. N. Ghosh, J. Phys. Chem. Lett. 5, 2836 (2014).

28. Y. L. Le, and Y. S. Lo, Adv. Funct. Mater. 19, 604 (2009).

29. Y. L. Xie, Electrochim. Acta 105, 137 (2013).

30. C. Xing, Y. Zhang, W. Yan, and L. Guo, Int. J. Hydrogen Energy 31, 2018 (2006).

31. M. Askari, N. Soltani, E. Saion, W. M. M. Yunus, M. H. Erfani, and M. Dorostkar, Superlattices Microstruct. 81, 193 (2015).

32. A. S. Hassanien, and A. A. Akl, Superlattices Microstruct. 89, 153–169 (2015).

33. H. T. Tung, N. T. Thao, and L. Q. Vinh, Int. J. Photoenergy 8, 8545207 (2018)

34. B. S. Bhupendra, S. Jana, and N. Pradhan, J. Am. Chem. Soc. 133, 1007 (2011).

35. M. P. A. Muthalif, Y. S. Lee, C. D. Sunesh, H. J. Kim, and Y. Choe, Appl. Surf. Sci. 396, 582 (2016).

36. S. K. Niladri, D. D. Sarma, R. M. Kadam, and N. Pradhan, J. Phys. Chem. Lett. 1, 2863 (2010).

37. C. Corrado, Y. Jiang, F. Oba, M. Kozina, F. Bridges, and J. Z. Zhang, J. Phys. Chem. A 113, 3830 (2009).

38. P. Mandal, S. S. Talwar, S. S. Major, and R. S. Srinivasa, J. Chem. Phys. 128, 114703 (2008).

39. N. Pradhan, D. Goorskey, J. Thessing, and X. Peng, J. Am. Chem. Soc. 127, 17586 (2005).

40. R. Xie, and X. Peng, J. Am. Chem. Soc. 131, 10645 (2009).

41. R. Beaulac, S. T. Ochsenbein, and D. R. Gamelin, Nanocrystal Quantum Dots , 2nd ed. (CRC Press, 2010).

42. A. A. Bol, J. Ferwerda, J. A. Bergwerff, and A. Meijerink, J. Lumin. 99, 325 (2002).

43. C. Gan, Y. Zhang, D. Battaglia, X. Peng, and M. Xiao, Appl. Phys. Lett. 92, 241111 (2008).

44. S. Jana, B. B. Srivastava, S. Acharya, P. K. Santra, N. R. Jana, D. D. Sarma, and N. Pradhan, Chem. Commun. 46, 2853 (2010).

45. B. B. Srivastava, S. Jana, N. S. Karan, S. Paria, N. R. Jana, D. D. Sarma, and N. Pradhan, J. Phys. Chem. Lett. 1, 1454 (2010).

46. M. P. A. Muthalif, Y. S. Lee, C. D. Sunesh, H. J. Kim, and Y. Choe, Appl. Surf. Sci. 396, 582 (2016).

47. T. H. Thanh, V. L. Quang, and H. T. Dat, J. Nanomater. 2016, 9806386 (2016).

48. T. T. Ha, C. H. Chi, N. Vy, N. T. Thoa, T. D. Huynh, and Q. V. Lam, Environ. Prog. Sustainable Energy 34, 1774 (2015).

49. T. H. Thanh, V. L. Quang, and D. H. Thanh, Sol. Energy Mater. Sol. Cells 143, 269 (2015).

50. T. H. Thanh, L. Q. Vinh, and H. T. Dat, Braz. J. Phys. 44, 746 (2014).

51. Y. F. Xu, W. Q. Wu, H. S. Rao, H. Y. Chen, D. B. Kuang, and C. Y. Su, Nano Energy 11, 621 (2014).


Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备05015387