2018-10-17 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 08 , Vol. 16 , 2018    10.3788/COL201816.080102


Anisotropy effect on multi-Gaussian beam propagation in turbulent ocean
Yalcin Ata1, Yahya Baykal2
1 TüBITAK Defense Industries Research and Development Institute (TüBITAK SAGE), P.K. 1 6 Mamak, 06261 Ankara, Turkey
2 Cankaya University, Department of Electrical-Electronics Engineering, Yukariyurtcu mah. Mimar Sinan cad., 06790 Ankara, Turkey

Chin. Opt. Lett., 2018, 16(08): pp.080102

DOI:10.3788/COL201816.080102
Topic:Atmospheric optics and oceanic optics
Keywords(OCIS Code): 010.4455  010.7060  010.4450  350.5500  010.1330  

Abstract
Average transmittance of multi-Gaussian (flat-topped and annular) optical beams in an anisotropic turbulent ocean is examined analytically based on the extended Huygens–Fresnel principle. Transmittance variations depending on the link length, anisotropy factor, salinity and temperature contribution factor, source size, beam flatness order of flat-topped beam, Kolmogorov microscale length, rate of dissipation of turbulent kinetic energy, rate of dissipation of the mean squared temperature, and thickness of annular beam are examined. Results show that all these parameters have effects in various forms on the average transmittance in an anisotropic turbulent ocean. Hence, the performance of optical wireless communication systems can be improved by taking into account the variation of average transmittance versus the above parameters.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (1190 KB)

Share:


Received:2018/4/5
Accepted:2018/6/13
Posted online:2018/7/27

Get Citation: Yalcin Ata, Yahya Baykal, "Anisotropy effect on multi-Gaussian beam propagation in turbulent ocean," Chin. Opt. Lett. 16(08), 080102(2018)

Note:



References

1. X. Chu, C. Qiao, and X. Feng, Opt. Laser Technol. 43, 1150 (2011).

2. Y. Baykal, H. T. Eyyuboglu, and Y. Cai, Appl. Opt. 48, 1943 (2009).

3. Y. Ata, and Y. Baykal, IEEE J. Sel. Area Commun. 33, 1996 (2015).

4. Y. Ata, and Y. Baykal, J. Mod. Opt. 58, 1644 (2011).

5. Y. Ata, Waves Random Complex 24, 431 (2014).

6. Y. Ata, Y. Baykal, and H. Gercekcioglu, Opt. Commun. 305, 126 (2013).

7. Y. Baykal, Opt. Commun. 231, 129 (2004).

8. H. T. Eyyuboglu, and Y. Baykal, Opt. Commun. 278, 17 (2007).

9. G. Wu, H. Guo, S. Yu, and B. Luo, Opt. Lett. 35, 715 (2010).

10. V. V. Nikishov, and V. I. Nikishov, Int. J. Fluid Mech. Res. 27, 82 (2000).

11. O. Korotkova, N. Farwell, and E. Shchepakina, Waves Random Complex Med. 22, 260 (2012).

12. Y. Ata, and Y. Baykal, J. Opt. Soc. Am. A 31, 1552 (2014).

13. Y. Ata, and Y. Baykal, Waves Random Complex 24, 164 (2014).

14. O. Korotkova, and N. Farwell, Opt. Commun. 284, 1740 (2011).

15. W. Lu, L. Liu, and J. Sun, J. Opt. A 8, 1052 (2006).

16. Y. Baykal, Opt. Commun. 393, 29 (2017).

17. V. S. R. Gudimetla, R. B. Holmes, and J. F. Riker, J. Opt. Soc. Am. A 31, 148 (2014).

18. Y. Zhao, Y. Zhang, and Q. Wang, Radioengineering 25, 652 (2016).

19. Y. Zhao, Y. Zhang, Z. Hu, Y. Li, and D. Wang, Opt. Commun. 371, 178 (2016).

20. Y. Li, Y. Zhang, Y. Zhu, and M. Chen, Appl. Opt. 55, 5234 (2016).

21. Y. Baykal, J. Mod. Opt. 65, 825 (2018).

22. Y. Baykal, Appl. Opt. 55, 7462 (2016).

23. Y. Ata, and Y. Baykal, Appl. Opt. 57, 2258 (2018).

24. Y. Li, Opt. Lett. 27, 1007 (2002).

25. S. A. Thorpe, The Turbulent Ocean (Cambridge University Press, 2005), p.?25.

26. F. Hanson, and M. Lasher, Appl. Opt. 49, 3224 (2010).

27. I. S. Gradshteyn, and I. M. Ryzhik, Tables of Integrals, Series and Products (Academic, 2000).


Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备05015387