2018-12-14 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 09 , Vol. 16 , 2018    10.3788/COL201816.090601


An interferometric phase shift fiber Bragg grating sensing system with greatly reduced background phase noise
Lina Ma1, Yu Chen1, Zhengliang Hu1, Jinxing Huang2, Jun Wang1, and Shiqing Li1
1 Colleague of Meteorology and Ocean, [National University of Defense Technology], Changsha 41 0073, China
2 [The Joint Staff of the Central Military Commission], Beijing 10002 2 , China

Chin. Opt. Lett., 2018, 16(09): pp.090601

DOI:10.3788/COL201816.090601
Topic:Fiber optics and optical communication
Keywords(OCIS Code): 060.2310  060.2370  060.3735  

Abstract
We presented an interferometric phase shift fiber Bragg grating (FBG) sensor, which inherited the advantages of FBG sensors, and, at the same time, the greatly reduced full-width-at-half-maximum bandwidth brought longer coherent length, higher sensitivity, and lower phase noise. Experiments show that at least a 7 dB reduction of phase noise can be achieved compared to FBG sensors interrogated by interferometer with the same optical path difference.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (825 KB)

Share:


Received:2018/6/13
Accepted:2018/7/18
Posted online:2018/8/30

Get Citation: Lina Ma, Yu Chen, Zhengliang Hu, Jinxing Huang, Jun Wang, and Shiqing Li, "An interferometric phase shift fiber Bragg grating sensing system with greatly reduced background phase noise," Chin. Opt. Lett. 16(09), 090601(2018)

Note: This work was supported by the National Natural Science Foundation of China (No. 11574397) and the Research Plan of National University of Defense Technology (No. ZK16-03-56).



References

1. R. Kashyap, Fiber Bragg Gratings (Academic of Elsevier, 2010).

2. A. D. Kersey, T. A. Berkoff, and W. W. Morey, Electron. Lett. 28, 236 (1992).

3. T. A. Beroff, and A. D. Kersey, IEEE Photon. Technol. Lett. 8, 1677 (1996).

4. M. D. Todd, G. A. Johnson, B. A. Althouse, and S. T. Vohra, IEEE Photon. Technol. Lett. 10, 1605 (1998).

5. Q. Zhang, L. Hu, J. Tian, N. J. Ianno, and M. Han, Proc. SPIE 8722, 87220R (2013).

6. P. Prabhathan, V. M. Murukeshan, Z. Jing, and P. V. Ramana, Opt. Express 17, 15330 (2009).

7. J. Lee, and G. Jiang, Opt. Express 21, 25553 (2013).

8. D. Gatti, G. Galzerano, D. Janner, S. Longhi, and P. Laporta, Opt. Express 16, 1945 (2008).

9. Q. Wu, and Y. Okabe, Opt. Lett. 37, 3336 (2012).

10. H. Wang, H. Guo, G. Xiao, N. Mrad, A. Kazemi, and D. Ban, Proc. SPIE 8720, 872019 (2013).

11. H. K. Bal, Z. Brodzeli, F. Sidiroglou, and S. F. Collins, Proc. SPIE 7653, 76530P (2010).

12. N. Y. Voo, P. Horak, M. Ibsen, and W. H. Loh, Proc. SPIE 5620, 179 (2004).

13. R. S. Weis, and B. L. Bachim, Meas. Sci. Technol. 12, 782 (2001).

14. S. M. Melle, A. T. Alavie, S. Karr, T. Coroy, K. Liu, and R. M. Measures, IEEE Photon. Technol. Lett. 5, 263 (1993).

15. Z. Meng, Y. Hu, S. Xiong, G. Stewart, G. Whitenett, and B. Culshaw, Appl. Opt. 44, 3425 (2005).

16. M. R. Salehi, and B. Cabon, J. Lightwave Technol. 22, 1510 (2004).

17. L. B. Mercer, J. Lightwave Technol. 9, 485 (1991).

18. B. Zhou, Principles of Laser (Chinese Academic, 2008).


Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备15018463号-7 公安备案沪公网安备 31011402005522号