2018-10-17 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 09 , Vol. 16 , 2018    10.3788/COL201816.091001


On-line beam diagnostics based on single-shot beam splitting phase retrieval
Xi He1;2, Cheng Liu1, and Jianqiang Zhu1
1 [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences], Shanghai 201 800, China
2 [University of Chinese Academy of Sciences], Beijing 100049, China

Chin. Opt. Lett., 2018, 16(09): pp.091001

DOI:10.3788/COL201816.091001
Topic:Image processing
Keywords(OCIS Code): 100.5070  110.1650  110.1758  

Abstract
We propose a novel on-line beam diagnostic method based on single-shot beam splitting phase retrieval. The incident beam to be measured is diffracted into many replicas by a Dammann grating and then propagates through a weakly scattering phase plate with a known structure; the exiting beams propagate along their original direction and form an array of diffraction patterns on the detector plane. By applying the intensity of diffraction patterns into an iterative algorithm and calculating between the grating plane, weakly scattering plane, and detector plane, the complex field of the incident beam can be reconstructed rapidly; the feasibility of this method is verified experimentally with wavelengths of 1053 and 632.8 nm.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (1262 KB)

Share:


Received:2018/3/6
Accepted:2018/7/25
Posted online:2018/8/31

Get Citation: Xi He, Cheng Liu, and Jianqiang Zhu, "On-line beam diagnostics based on single-shot beam splitting phase retrieval," Chin. Opt. Lett. 16(09), 091001(2018)

Note: This work was supported by the National Natural Science Foundation of China (No. 61675215) and the Shanghai Sailing Program (No. 18YF1426600).



References

1. R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, and C. J. Stolz, Opt. Eng. 43, 2873 (2004).

2. T. Latychevskaia, J. N. Longchamp, and H. W. Fink, Opt. Express 20, 28871 (2012).

3. A. Basden, D. Geng, D. Guzman, T. Morris, R. Myers, and C. Saunter, Appl. Opt. 46, 6136 (2007).

4. L. Kong, L. Zhang, L. Zhu, H. Bao, Y. Guo, X. Rao, L. Zhong, and C. Rao, Chin. Opt. Lett. 14, 100102 (2016).

5. T. M. Jeong, M. Menon, and G. Yoon, Appl. Opt. 44, 4523 (2005).

6. J. Bromage, S. W. Bahk, D. Irwin, J. Kwiatkowski, A. Pruyne, M. Millecchia, M. Moore, and J. D. Zuegel, Opt. Express 16, 16561 (2005).

7. A. Fleck, and V. Lakshminarayanan, Appl. Opt. 49, G136 (2005).

8. S. W. Bahk, J. Bromage, I. A. Begishev, C. Mileham, C. Stoeckl, M. Storm, and J. D. Zuegel, Appl. Opt. 47, 4589 (2005).

9. H. Tao, S. P. Veetil, X. Pan, C. Liu, and J. Zhu, Chin. Opt. Lett. 14, 071203 (2016).

10. B. E. Kruschwitz, S. W. Bahk, J. Bromage, M. D. Moore, and D. Irwin, Opt. Express 20, 20874 (2012).

11. R. W. Gerchberg, Optik 35, 237 (1972).

12. G. Z. Yang, and B. Y. Gu, Acta. Phys. Sin. 30, 410 (1981).

13. J. R. Fienup, Opt. Lett. 3, 27 (1978).

14. J. R. Fienup, Appl. Opt. 21, 2758 (1982).

15. F. Zhang, and J. M. Rodenburg, Phys. Rev. B 82, 2511 (2010).

16. F. Zhang, B. Chen, G. R. Morrison, J. V. Comamala, M. G. Sicairos, and I. K. Robinson, Nat. Commun. 7, 13367 (2016).

17. X. Pan, S. P. Veetil, C. Liu, H. Tao, Y. Jiang, Q. Lin, X. Li, and J. Zhu, Laser Phys. Lett. 13, 055001 (2016).

18. H. M. Faulkner, and J. M. Rodenburg, Phys. Rev. Lett. 93, 023903 (2004).

19. S. Dong, P. Nanda, K. Guo, J. Liao, and G. Zheng, Photon. Res. 3, 19 (2015).

20. X. Pan, C. Liu, Q. Lin, and J. Zhu, Opt. Express 21, 6162 (2013).

21. C. Wang, Z. Xu, H. Liu, Y. Wang, J. Wang, and R. Tai, Appl. Opt. 56, 2099 (2017).

22. X. Pan, C. Liu, and J. Zhu, Appl. Phys. Lett. 103, 171105 (2013).

23. O. Cohen, and P. Sidorenko, Optica 3, 9 (2016).


Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备05015387