2018-12-11 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 09 , Vol. 16 , 2018    10.3788/COL201816.091901


Mechanisms and absolute quantum yield of upconversion luminescence of fluoride phosphors
A. A. Lyapin1, S. V. Gushchin1, A. S. Ermakov1, S. V. Kuznetsov2, P. A. Ryabochkina1, V. Yu. Proydakova2, V. V. Voronov2, P. P. Fedorov2, and M. V. Chernov1
1 [National Research Ogarev Mordovia State University], Saransk 430005, Mordovia, Russia
2 [Prokhorov General Physics Institute of the Russian Academy of Sciences], Moscow 119991, Russia

Chin. Opt. Lett., 2018, 16(09): pp.091901

DOI:10.3788/COL201816.091901
Topic:Nonlinear optics
Keywords(OCIS Code): 190.7220  160.2540  140.5680  

Abstract
Mechanisms of upconversion luminescence (UCL) of SrF2:Er phosphors corresponding to the G411/2→I415/2, H29/2→I415/2, F45/2→I415/2, F47/2→I415/2, H211/2→I415/2, S43/2→I415/2, F49/2→I415/2, and I49/2→I415/2 transitions upon excitation of the I411/2 level of Er3+ ions were investigated. Energy transfer upconversion processes are responsible for the populating of the H29/2, H211/2, S43/2, and F49/2 levels. Cooperative process is the dominant mechanism of luminescence from S43/2 and F49/2 levels for SrF2:Er with high concentrations of Er3+ ions. The UCL from G411/2 and F45/2 is explained by excited-state absorption. Cross-relaxation processes take part in the population of F49/2 and I49/2 levels. For quantifying material performance, the Er3+-concentration dependence of UCL and the absolute quantum yields of SrF2:Er were studied. The most intensive visible luminescence was obtained for SrF2:Er (14.2%) with 0.28% maximum quantum yield.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (651 KB)

Share:


Received:2018/5/19
Accepted:2018/7/25
Posted online:2018/8/31

Get Citation: A. A. Lyapin, S. V. Gushchin, A. S. Ermakov, S. V. Kuznetsov, P. A. Ryabochkina, V. Yu. Proydakova, V. V. Voronov, P. P. Fedorov, and M. V. Chernov, "Mechanisms and absolute quantum yield of upconversion luminescence of fluoride phosphors," Chin. Opt. Lett. 16(09), 091901(2018)

Note: This work was supported by the Russian Science Foundation (No. 17-72-10163).



References

1. F. Vetrone, and J. A. Capobianco, Int. J. Nanotechnol. 5, 1306 (2008).

2. M. Misiak, M. Skowicki, T. Lipiński, A. Kowalczyk, K. Prorok, S. Arabasz, and A. Bednarkiewicz, Nano Res. 10, 3333 (2017).

3. Z. Song, Y. G. Anissimov, J. Zhao, A. V. Nechaev, A. Nadort, D. Jin, T. W. Prow, M. S. Roberts, and A. V. Zvyagin, J. Biomed. Opt. 18, 061215 (2013).

4. C. Portioli, M. Pedroni, D. Benati, M. Donini, R. Bonafede, R. Mariotti, L. Perbellini, M. Cerpelloni, S. Dusi, A. Speghini, and M. Bentivoglio, Nanomedicine 11, 3039 (2016).

5. A. A. Lyapin, P. A. Ryabochkina, A. N. Chabushkin, S. N. Ushakov, and P. P. Fedorov, J. Lumin. 167, 120 (2015).

6. A. A. Lyapin, P. A. Ryabochkina, S. N. Ushakov, and P. P. Fedorov, Quantum Electron. 44, 602 (2014).

7. A. A. Lyapin, S. V. Kuznetsov, P. A. Ryabochkina, A. P. Merculov, M. V. Chernov, Y. A. Ermakova, A. A. Luginina, and P. P. Fedorov, Laser Phys. Lett. 14, 076003 (2017).

8. C. M. Verber, D. R. Grieser, and W. H. Jones, J. Appl. Phys. 42, 2767 (1971).

9. S. R. Bullock, B. R. Reddy, and P. Venkateswarlu, J. Opt. Soc. Am. B 14, 553 (1997).

10. I. Richman, J. Chem. Phys. 41, 2836 (1964).

11. D. J. M. Bevan, O. Greis, and J. Strahle, Acta Crystallogr. A 36, 889 (1980).

12. P. P. Fedorov, Butll. Soc. Catalana Cienc. Fis. Quim. Mat. 12, 349 (1991).

13. S. A. Kazanskii, A. I. Ryskin, A. E. Nikiforov, A. Y. Zaharov, M. Y. Ougrumov, and G. S. Shakurov, Phys. Rev. B 72, 014127 (2005).

14. M. B. Seelbinder, and J. C. Wright, Phys. Rev. B 20, 4308 (1979).

15. N. Rakov, R. B. Guimar?es, D. F. Franceschini, and G. S. Maciel, Mater. Chem. Phys. 135, 317 (2012).

16. Y. Liu, D. Li, Q. Ma, X. Dong, X. Xi, W. Yu, X. Wang, J. Wang, and G. Liu, J. Mater. Sci. Mater. Electron. 27, 5277 (2016).

17. F. Huang, L. Hu, and D. Chen, Ceram. Int. 41, 189 (2015).

18. J. Zhang, S. Wang, T. Rong, and L. Chen, J. Am. Ceram. Soc. 87, 1072 (2004).

19. C. Ma, J. Qiu, D. Zhou, Z. Yang, and Z. Song, Chin. Opt. Lett. 12, 081601 (2014).

20. Y. Zhang, X. Wang, Y. Li, Y. Li, and X. Yao, Opt. Mater. Express 8, 12 (2018).

21. O. Henderson-Sapir, J. Munch, and D. J. Ottaway, Opt. Express 24, 6869 (2016).

22. Z. Chen, X. Zhang, S. Zeng, Z. Liu, Z. Ma, G. Dong, S. Zhou, X. Liu, and J. Qiu, Appl. Phys. Express 8, 032301 (2015).

23. P. P. Fedorov, A. A. Luginina, S. V. Kuznetsov, and V. V. Osiko, J. Fluorine Chem. 132, 1012 (2011).

24. P. P. Fedorov, S. V. Kuznetsov, M. N. Mayakova, V. V. Voronov, R. P. Ermakov, A. E. Baranchikov, and V. V. Osiko, Russ. J. Inorg. Chem. 56, 1525 (2011).

25. M. N. Mayakova, A. A. Luginina, S. V. Kuznetsov, V. V. Voronov, R. P. Ermakov, A. E. Baranchikov, V. K. Ivanov, O. V. Karban, and P. P. Fedorov, Mendeleev Commun. 24, 360 (2014).

26. A. Kobayashi, Absolute Measurements of Photoluminescence Quantum Yields of Organic Compounds Using an Integrating Sphere (Gunma University, 2010).

27. G. Gao, D. Busko, S. Kauffmann-Weiss, A. Turshatov, I. A. Howard, and B. S. Richards, J. Mater. Chem. 5, 11010 (2017).

28. W. Ma, X. Qian, J. Wang, J. Liu, X. Fan, J. Liu, L. Su, and J. Xu, Sci. Rep. 6, 36635 (2016).

29. J. Liu, J. Liu, Z. Guo, H. Zhang, W. Ma, J. Wang, and L. Su, Opt. Express. 24, 30289 (2016).

30. F. Auzel, Chem. Rev. 104, 139 (2004).

31. M. Pollnau, D. R. Gamelin, S. R. L?thi, and H. U. G?del, Phys. Rev. B 61, 3337 (2000).

32. C. G. Andeen, J. J. Fontanella, M. C. Wintersgill, P. J. Welcher, R. J. Kimble, and G. E. Matthews, J. Phys. C Solid State Phys. 14, 3557 (1981).

33. M. Mujaji, G. D. Jones, and R. W. G. Syme, Phys. Rev. B 46, 14398 (1992).


Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备15018463号-7 公安备案沪公网安备 31011402005522号