2018-10-17 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 09 , Vol. 16 , 2018    10.3788/COL201816.092601


Flexible and high-efficiency generation of arbitrary vector vortex beams on hybrid-order Poincaré sphere
Hao Zhang, Lei Yao, Yuyan Pang, and Jun Xia
Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, [Southeast University], Nanjing 210096, China

Chin. Opt. Lett., 2018, 16(09): pp.092601

DOI:10.3788/COL201816.092601
Topic:Physical optics
Keywords(OCIS Code): 260.5430  050.4865  070.6120  

Abstract
We propose theoretically and verify experimentally a compact optical configuration to directly generate arbitrary vector vortex beams on a hybrid-order Poincaré sphere with good flexibility and high efficiency based on a reflective phase-only liquid crystal spatial light modulator (LC-SLM). The conversion system, consisting of an LC-SLM and a quarter-wave plate, can be considered a flexible dielectric metasurface to simultaneously modulate inhomogeneous polarization and helical phase-front. This approach has some advantages, including a simple experimental setup, good flexibility, and high efficiency. Orthogonally polarized modes alignment and an explicit superposition existing in the conventional method are not necessary in the proposed method, which exhibits potential applications in many advanced domains.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (659 KB)

Share:


Received:2018/5/12
Accepted:2018/8/7
Posted online:2018/8/31

Get Citation: Hao Zhang, Lei Yao, Yuyan Pang, and Jun Xia, "Flexible and high-efficiency generation of arbitrary vector vortex beams on hybrid-order Poincaré sphere," Chin. Opt. Lett. 16(09), 092601(2018)

Note: This work was supported by the National High Technology Research and Development Program of China (No. 2015AA016301), the National Key R&D Program of China (No. 2017YFB1002900), and the Jiangsu Provincial Key R&D Program (No. BE2016216).



References

1. H. Poincaré, Theorie Mathematique de la Lumiere (Gauthiers-Villars, 1892).

2. Q. Zhan, Adv. Opt. Photon. 1, 1 (2009).

3. G. Milione, H. I. Stzul, D. A. Nolan, and R. R. Alfano, Phys. Rev. Lett. 107, 053601 (2011).

4. X. Yi, Y. Liu, X. Ling, X. Zhou, Y. Ke, H. Luo, and S. Wen, Phys. Rev. A 91, 023801 (2015).

5. X. Hao, C. Kuang, T. Wang, and X. Liu, Opt. Lett. 35, 3928 (2010).

6. Y. Liu, D. Cline, and P. He, Nucl. Instrum. Methods Phys. Res. 424, 296 (1999).

7. B. Zhang, Z. Chen, H. Sun, J. Xia, and J. Ding, J. Opt. 18, 035703 (2016).

8. Y. Liu, Y. Ke, H. Luo, and S. Wen, Nanophotonics 6, 51 (2016).

9. Y. Zhang, P. Li, S. Liu, and J. Zhao, Opt. Lett. 40, 4444 (2015).

10. J. Tang, Y. Ming, Z. Chen, W. Hu, F. Xu, and Y. Lu, Phys. Rev. A 94, 012313 (2016).

11. B. Ndagano, I. Nape, M. A. Cox, C. Rosales-Guzman, and A. Forbes, J. Lightwave Technol. 36, 292 (2018).

12. J. Wang, Chin. Opt. Lett. 16, 050006 (2018).

13. C. Qiu, D. Palima, A. Novitsky, D. Gao, W. Ding, S. V. Zhukovsky, and J. Gluckstad, Nanophotonics 3, 181 (2014).

14. Z. Zhao, J. Wang, S. Li, and A. E. Willner, Opt. Lett. 38, 932 (2013).

15. F. Cardano, E. Karimi, S. Slussarenko, L. Marrucci, C. Lisio, and E. Santamato, Appl. Opt. 51, C1 (2012).

16. Y. S. Rumala, G. Milione, T. A. Nguyen, S. Pratavieira, Z. Hossain, D. Nolan, S. Slussarenko, E. Karimi, L. Marrucci, and R. R. Alfano, Opt. Lett. 38, 5083 (2013).

17. Z. Liu, Y. Liu, Y. Ke, Y. Liu, W. Shu, H. Luo, and S. Wen, Photon. Res. 5, 15 (2017).

18. T. Wang, S. Fu, S. Zhang, C. Gao, and F. He, Appl. Phys. B 122, 231 (2016).

19. D. Naidoo, F. S. Rous, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, Nat. Photon. 10, 327 (2016).

20. M. Kang, J. Chen, X. L. Wang, and H. T. Wang, J. Opt. Soc. Am. B 29, 572 (2012).

21. F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, ACS Photon. 3, 1558 (2016).

22. S. Fu, T. Wang, Z. Zhang, Y. Zhai, and C. Gao, Appl. Phys. Lett. 110, 191102 (2017).

23. Z. Chen, T. Zeng, B. Qian, and J. Ding, Opt. Express 23, 17701 (2015).

24. W. Han, Y. Yang, W. Cheng, and Q. Zhan, Opt. Express 21, 20692 (2013).

25. C. Rosales-Guzman, N. Bhebhe, and A. Forbes, Opt. Express 25, 25697 (2017).

26. A. Niv, G. Biener, V. Kleiner, and E. Hasman, Opt. Express 14, 4208 (2006).

27. W. Osten, and N. Reingand, Optical Imaging and Metrology: Advanced Technologies (Wiley, 2012), p.?1.

28. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).

29. N. Heckenberg, R. McDuff, C. Smith, H. Rubinsztein-Dunlop, and M. Wegener, Opt. Quantum Electron. 24, S951 (1992).

30. M. Born, and E. Wolf, Principles of Optics (Cambridge University, 1997).

31. M. Harris, C. A. Hill, P. R. Tapster, and J. M. Vaughan, Phys. Rev. A 49, 3119 (1994).

32. R. P. Chen, Z. Chen, K. H. Chew, P. G. Li, Z. Yu, J. Ding, and S. L. He, Sci. Rep. 5, 10628 (2015).


Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备05015387