2018-11-22 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 10 , Vol. 16 , 2018    10.3788/COL201816.101202


Fringe shaping for high-/low-reflectance surface in single-trial phase-shifting profilometry
Han-Yen Tu, Ssu-Chia He
Department of Electrical Engineering, [Chinese Culture University], Taipei 11114, Taiwan, China

Chin. Opt. Lett., 2018, 16(10): pp.101202

DOI:10.3788/COL201816.101202
Topic:Instrumentation, measurement and metrology
Keywords(OCIS Code): 120.2650  100.0100  

Abstract
This study describes a novel fringe-shaping technique developed to alleviate the fringe truncation problem engendered by the acquired saturated and/or weak fringe images from high-/low-reflectance surfaces of three-dimensional (3D) objects in phase-shifting profilometry. The particle swarm optimization algorithm is employed to perform the recovery of the truncated fringes with optimal fitting for compensation after single-trial acquisition. The results show that the proposed method improves phase recovery accuracy to accomplish 3D surface reconstruction with only one set of phase-shifting fringes under different truncation sceneries.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (574 KB)

Share:


Received:2018/7/23
Accepted:2018/8/27
Posted online:2018/9/19

Get Citation: Han-Yen Tu, Ssu-Chia He, "Fringe shaping for high-/low-reflectance surface in single-trial phase-shifting profilometry," Chin. Opt. Lett. 16(10), 101202(2018)

Note: This work was partly supported by the Ministry of Science and Technology (MOST 104-2221-E-034-010-MY3), Taiwan, China. The authors thank the Information Optics and Photonics Laboratory, Taiwan Normal University for technical assistance.



References

1. S. S. Gorthi, and P. Rastogi, Opt. Lasers Eng. 48, 133 (2010).

2. C. Waddington, and J. Kofman, Opt. Lasers Eng. 48, 251 (2010).

3. D. Palousek, M. Omasta, D. Koutny, J. Bednar, T. Koutecky, and F. Dokoupil, Opt. Mater. 40, 1 (2015).

4. G. H. Liu, X. Y. Liu, and Q. Y. Feng, Appl. Opt. 50, 4557 (2011).

5. H. Jiang, H. Zhao, and X. Li, Opt. Lasers Eng. 50, 1484 (2012).

6. B. Salahieh, Z. Chen, J. J. Rodriguez, and R. Liang, Opt. Express 22, 10064 (2014).

7. H. Zhao, X. Liang, X. Diao, and H. Jiang, Opt. Lasers Eng. 54, 170 (2014).

8. J. Jeong, and M. Y. Kim, Opt Express 18, 27787 (2010).

9. S. Zhang, and S. Yau, Opt. Eng. 48, 033604 (2009).

10. L. Ekstrand, and S. Zhang, Opt. Eng. 50, 123603 (2011).

11. D. Li, and J. Kofman, Opt. Express 22, 9887 (2014).

12. S. Feng, Y. Zhang, Q. Chen, C. Zuo, R. Li, and G. Shen, Opt. Laser Eng. 59, 56 (2014).

13. K. Zhong, Z. Li, X. Zhou, Y. Li, Y. Shi, and C. Wang, Int. J. Adv. Manuf. Technol. 76, 1563 (2015).

14. H. Lin, J. Gao, Q. Mei, Y. He, J. Liu, and X. Wang, Opt. Express 24, 7703 (2016).

15. C. Chen, N. Gao, X. Wang, and Z. Zhang, Meas. Sci. Technol. 29, 055203 (2018).

16. M. Clerc, in Proc. ICEC’99 , Washington, DC (1999), p.?1951.

17. E. Zappa, and G. Busca, Opt. Lasers Eng. 46, 106 (2008).

18. M. Vo, Z. Wang, T. Hoang, and D. Nguyen, Opt. Lett. 35, 3192 (2010).

19. K. C. Chang Chien, H. Y. Tu, C. H. Hsieh, C. J. Cheng, and C. Y. Chang, Meas. Sci. Technol. 29, 015007 (2018).

20. Y. Zhang, S. Wang, and G. Ji, Math. Probl. Eng. 2015, 931256 (2015).

21. H. Guo, H. He, and M. Chen, Appl. Opt. 43, 2906 (2004).


Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备15018463号-7 公安备案沪公网安备 31011402005522号