2018-11-21 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 10 , Vol. 16 , 2018    10.3788/COL201816.101401


A design of a surface-doped Yb:YAG slab laser with high power and high efficiency
Jiao Liu1;2, Yang Liu1;2, Xiaojun Tang1;2, Chao Wang1;2, Lei Liu1;2, Lu Chen1;2, Ning Li1;2, Ke Wang1;2, Xingbo Liang1;2, Kunpeng Lü1;2, Xue Yang1;2, Hong Zhao1;2, and Nianjiang Chen1;2
1 [Institute of North Optics and Electronics], Beijing 1 0001 5, China
2 [Science and Technology on Solid-State Laser Laboratory], Beijing 100015, China

Chin. Opt. Lett., 2018, 16(10): pp.101401

DOI:10.3788/COL201816.101401
Topic:Lasers and laser optics
Keywords(OCIS Code): 140.3380  140.3460  140.3580  140.3615  

Abstract
We demonstrate a high-efficiency and high-power quasi-three-level laser based on a trapezoidal composite slab architecture with a 270 μm-thick Yb-doping surface. The design of a surface-doped slab architecture, temperature effects, laser oscillator model, and laser oscillator experiments with a surface-doped slab as a laser host medium have been presented. By theoretical calculation, the temperature rise in the surface-doped slab is only one seventh of that in the bulk-doped slab at the same maximum pump power of 30 kW. Finally, in the laser oscillator experiments, an output energy of 21.6 J is obtained when the pump energy is 48 J with a repetition rate of 5 Hz and a pulse width of 1 ms. The optical-optical efficiency is 45%.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (490 KB)

Share:


Received:2018/6/27
Accepted:2018/8/16
Posted online:2018/9/14

Get Citation: Jiao Liu, Yang Liu, Xiaojun Tang, Chao Wang, Lei Liu, Lu Chen, Ning Li, Ke Wang, Xingbo Liang, Kunpeng Lü, Xue Yang, Hong Zhao, and Nianjiang Chen, "A design of a surface-doped Yb:YAG slab laser with high power and high efficiency," Chin. Opt. Lett. 16(10), 101401(2018)

Note: This project is funded by the Science and Technology on Solid-State Laser Laboratory.



References

1. J. Liu, L. Ge, L. Feng, H. Jiang, H. Su, T. Zhou, J. Wang, Q. Gao, and J. Li, Chin. Opt. Lett. 14, 051404 (2016).

2. H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, IEEE J. Sel. Top. Quantum Electron. 3, 105 (1997).

3. C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. A. Skidmore, C. A. Ebbers, S. B. Sutton, and K. S. Jancaitis, IEEE J. Quantum Electron. 34, 2010 (1998).

4. W. F. Krupke, IEEE J. Sel. Top. Quantum Electron. 6, 1287 (2000).

5. W. F. Krupke, and L. L. Chase, Opt. Quantum Electron. 22, S1 (1989).

6. A. Giesen, H. Hugel, A. Voss, K. Witting, U. Brauch, and H. Opower, Appl. Phys. B 58, 365 (1994).

7. S. S. Schad, V. Kuhn, T. Gottwald, V. Negoita, A. Killi, and K. Wallmeroth, Proc. SPIE 8959, 89590U (2014).

8. X. Chen, L. Xu, H. Hu, T. Zhou, Y. Sun, and H. Jiang, Opt. Express 24, 24517 (2016).

9. T. Clatterbuck, and D. Mordaunt, Proc. SPIE 8381, 83810W (2012).

10. D. Filgas, D. Rockwell, and K. Spariosu, Raytheon Tech. Today 1, 9 (2008).

11. T. S. Rutherford, W. M. Tulloch, E. K. Gustafson, R. L. Byer, and T. S. Rutherford, IEEE J. Quantum Electron. 36, 205 (2000).

12. J. Eggleston, T. J. Kane, K. Kuhn, and J. Unternahrer, IEEE J. Quantum Electron. 20, 289 (1984).

13. R. J. Beach, Opt. Commun. 123, 385 (1996).

14. P. Peterson, A. Gavrielides, and P. M. Sharma, Opt. Commun. 109, 282 (1994).


Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备15018463号-7 公安备案沪公网安备 31011402005522号