2018-11-22 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 10 , Vol. 16 , 2018    10.3788/COL201816.102201


Fabrication of a large-aperture continuous phase plate in two modes using atmospheric pressure plasma processing
Xing Su1, Longguang Xia1, Kan Liu1, Peng Zhang1, Ping Li2, Runchang Zhao2, and Bo Wang1
1 Center for Precision Engineering, [Harbin Institute of Technology], Harbin 1 50001 , China
2 [Research Center of Laser Fusion, China Academy of Engineering Physics], Mianyang 62 1900, China

Chin. Opt. Lett., 2018, 16(10): pp.102201

DOI:10.3788/COL201816.102201
Topic:Optical design and fabrication
Keywords(OCIS Code): 220.4610  220.5450  

Abstract
In order to fabricate a large-aperture continuous phase plate (CPP) using atmospheric pressure plasma processing (APPP) with high efficiency and precision, the position dwell mode and velocity mode were proposed and the iterative calculation method was developed for the non-constant removal rate. Two 320 mm × 320 mm × 2 mm CPPs were fabricated with two processing modes. The experiment results show that the velocity mode is capable of significantly reducing the processing time and shape error. The total processing time is decreased from 13.2 h to 9.3 h, and the surface shape error is decreased from 0.158λ to 0.119λ (λ = 632.8 nm) (root mean square).

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (1246 KB)

Share:


Received:2018/5/26
Accepted:2018/8/16
Posted online:2018/8/31

Get Citation: Xing Su, Longguang Xia, Kan Liu, Peng Zhang, Ping Li, Runchang Zhao, and Bo Wang, "Fabrication of a large-aperture continuous phase plate in two modes using atmospheric pressure plasma processing," Chin. Opt. Lett. 16(10), 102201(2018)

Note: This work was supported by the National Natural Science Foundation of China (No. 51175123) and the National Science and Technology Major Project (No. 2013ZX04006011-205).



References

1. W. Qu, H. Gu, and Q. Tan, Chin. Opt. Lett. 14, 031404 (2016).

2. R. Wang, Z. Zhang, C. Guo, D. Xue, and X. Zhang, Chin. Opt. Lett. 14, 120501 (2016).

3. G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004).

4. C. Lion, in The Sixth International Conference on Inertial Fusion Sciences and Applications (2010), p.?012003.

5. X. Deng, Q. Zhu, W. Zheng, X. Wei, F. Jing, D. Hu, W. Zhou, B. Feng, J. Wang, Z. Peng, L. Liu, Y. Chen, L. Ding, D. Lin, L. Guo, and Z. Dang, Proc. SPIE 9266, 926607 (2014).

6. J. Menapace, P. Davis, W. Steele, M. R. Hachkowski, and A. Nelson, Proc. SPIE 6403, 64030N (2007).

7. B. Wang, J. Zhang, and S. Dong, Chin. Opt. Lett. 7, 537 (2009).

8. H. Jin, B. Wang, and F. Zhang, Chin. Opt. Lett. 9, 063001 (2011).

9. N. Li, Q. Xin, P. Zheng, and B. Wang, Plasma Sci. Technol. 17, 567 (2015).

10. X. Su, Q. Xin, Y. Liu, L. Xia, and B. Wang, Proc. SPIE 10255, 102550P (2017).

11. R. Asdpen, R. McDonough, and F. R. Nithchie, Appl. Opt. 11, 2739 (1972).

12. R. A. Jones, Appl. Opt. 16, 218 (1977).

13. C. L. Carnal, C. M. Egert, and K. W. Hylton, Proc. SPIE 1752, 54 (1992).

14. T. F. Coleman, and Y. Li, SIAM J. Optim. 6, 1040 (1996).

15. H. Fang, P. Guo, and J. Yu, Appl. Opt. 45, 4291 (2006).

16. J. Wu, Z. Lu, H. Zhang, and T. Wang, Appl. Opt. 48, 3930 (2009).


Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备15018463号-7 公安备案沪公网安备 31011402005522号