2019-01-17 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 11 , Vol. 16 , 2018    10.3788/COL201816.110602


Wideband tunable optoelectronic oscillator based on a single-bandpass microwave photonic filter and a recirculating delay line
Yongchi Xu1, Huanfa Peng1, Rui Guo1, Huayang Du1, Guoqing Hu2, Lixin Zhu1, and Zhangyuan Chen1;2
1 State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics Engineering and Computer Science, [Peking University], Beijing 1 00871 , China
2 [Peking University Shenzhen Institution], Shenzhen 518055, China

Chin. Opt. Lett., 2018, 16(11): pp.110602

DOI:10.3788/COL201816.110602
Topic:Fiber optics and optical communication
Keywords(OCIS Code): 060.5625  230.4910  070.2615  

Abstract
A wideband tunable optoelectronic oscillator (OEO) based on a tunable single-bandpass microwave photonic filter (MPF) and a recirculating delay line is proposed and experimentally demonstrated. The MPF is formed by cascading a finite impulse response filter and an infinite impulse response filter, which can enhance the quality factor of the MPF and suppress the side modes of the OEO. The frequency response of the tunable MPF is theoretically analyzed. By placing the MPF into the OEO, tunable microwave signals from 10.3 GHz to 26.7 GHz and a 100 MHz step tunability are experimentally demonstrated. The phase noise is ?113 dBc/Hz@10 kHz. The results agree well with the theory.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (884 KB)

Share:


Received:2018/7/25
Accepted:2018/9/20
Posted online:2018/10/30

Get Citation: Yongchi Xu, Huanfa Peng, Rui Guo, Huayang Du, Guoqing Hu, Lixin Zhu, and Zhangyuan Chen, "Wideband tunable optoelectronic oscillator based on a single-bandpass microwave photonic filter and a recirculating delay line," Chin. Opt. Lett. 16(11), 110602(2018)

Note: This work was supported in part by the National Natural Science Foundation of China (Nos. 61690194, 61805003, and 61505002), the China Postdoctoral Science Foundation (No. 2018M630035), the Fundamental Research Project of Shenzhen Sci. & Tech. Fund (Nos. JCYJ20170307172513653, JCYJ20170412153812353, JCYJ20170307164201104, JCYJ20170817113758285, and JCYJ20170817112527562), and the personal entrepreneur project of Shenzhen Sci. & Tech. Fund (No. GRCK2017042415235934).



References

1. J. Capmany, and D. Novak, Nat. Photon. 1, 319 (2007).

2. T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, Nat. Photon. 5, 425 (2011).

3. F. Z. Fan, and M. Dagenais, in IEEE Trans. Microw. Theory Tech. 45, 1296 (1997).

4. G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Belisle, IEEE Trans. Microw. Theory Tech. 53, 3090 (2005).

5. S. X. Yao, and L. Maleki, J. Opt. Soc. Am. B 13, 1725 (1996).

6. X. S. Yao, and L. Maleki, J. Quantum Electron. 36, 79 (2000).

7. D. Eliyahu, D. Seidel, and L. Maleki, in IEEE International Frequency Control Symposium , Honolulu, HI, (2008), p.?811.

8. A. Wang, J. H. Wo, J. Zhang, X. Luo, X. Xu, D. M. Zhang, P. F. Du, and L. Yu, Chin. Opt. Lett. 15, 100603 (2017).

9. J. Capmany, B. Ortega, and D. Pastor, J. Lightwave Technol. 24, 201 (2006).

10. T. Chen, X. Yi, L. Li, and R. Minasian, Opt. Lett. 37, 4699 (2012).

11. X. Xie, C. Zhang, T. Sun, P. Guo, X. Zhu, L. Zhu, W. Hu, and Z. Chen, Opt. Lett. 38, 655 (2013).

12. X. Zhu, F. Chen, H. Peng, and Z. Chen, Opt. Express 25, 9232 (2017).

13. H. Peng, C. Zhang, X. Xie, T. Sun, P. Guo, X. Zhu, L. Zhu, W. Hu, and Z. Chen, J. Lightwave Technol. 33, 2707 (2015).

14. H. Peng, Y. Xu, X. Peng, X. Zhu, R. Guo, F. Chen, H. Du, Y. Chen, C. Zhang, L. Zhu, W. Hu, and Z. Chen, Opt. Express 25, 10287 (2017).

15. J. Mora, B. Ortega, A. Diez, J. L. Cruz, M. V. Andres, J. Capmany, and D. Pastor, J. Lightwave Technol. 24, 2500 (2006).

16. X. Xue, X. Zheng, H. Zhang, and B. Zhou, Opt. Express 19, 18423 (2011).

17. J. Mora, L. R. Chen, and J. Capmany, J. Lightwave Technol. 26, 2663 (2008).

18. H. Wang, J. Zheng, W. Li, L. Wang, M. Li, L. Xie, and N. Zhu, Opt. Lett. 38, 4857 (2013).

19. C. Liu, W. Zou, and J. Chen, IEEE Photon. J. 5, 5501807 (2013).

20. H. Fu, K. Zhu, H. Ou, and S. He, Opt. Laser Technol. 42, 81 (2010).

21. J. Zhang, L. Gao, and J. Yao, IEEE Photon. Technol. Lett. 26, 326 (2014).

22. H. Peng, X. Xie, C. Zhang, T. Sun, P. Guo, F. Chen, L. Zhu, W. Hu, and Z. Chen, in Asia Communications and Photonics Conference 2014, Shanghai, China (2014), paper?AF3A.5.

23. B. Moslehi, and J. W. Goodman, J. Lightwave Technol. 10, 1142 (1992).

24. F. Jiang, J. H. Wong, H. Q. Lam, J. Zhou, S. Aditya, P. H. Lim, K. E. K. Lee, P. P. Shum, and X. Zhang, Opt. Express 21, 16381 (2013).

25. M. Kaba, H.-W. Li, A. S. Daryoush, J.-P. Vilcot, D. Decoster, J. Chazelas, G. Bouwmans, Y. Quiquempois, and F. Deborgies, IEEE Microw. Mag. 7, 38 (2006).


Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备15018463号-7 公安备案沪公网安备 31011402005522号