2019-01-17 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 12 , Vol. 16 , 2018    10.3788/COL201816.120201


Intensity-independent molecular rotational decoherence lifetimes measured with mean wavelength shifts of femtosecond pulses
Hongqiang Xie1;2, Guihua Li3, Jinping Yao2, Wei Chu2, Zhiming Chen1, and Ya Cheng2;4
1 School of Science, [East China University of Technology], Nanchang 330013, China
2 State Key Laboratory of High Field Laser Physics, [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences], Shanghai 201800, China
3 School of Science, [East China Jiaotong University], Nanchang 330013, China
4 Collaborative Innovation Center of Extreme Optics, [Shanxi University], Taiyuan 030006, China

Chin. Opt. Lett., 2018, 16(12): pp.120201

DOI:10.3788/COL201816.120201
Topic:Atomic and molecular physics
Keywords(OCIS Code): 020.2649  300.6530  320.6629  

Abstract
We report on an experimental investigation on the dynamic decoherence process of molecular rotational wavepackets during femtosecond laser filamentation based on time-dependent mean wavelength shifts of a weak probe pulse. Details of periodic revival structures of transient alignment can be readily obtained from the measured shifted spectra due to the periodic modulation of the molecular refractive index. Using the method, we measured decoherence lifetimes of molecular rotational wavepackets in N2 and O2 under different experimental conditions. Our results indicate that decoherence lifetimes of molecular rotational wavepackets are primarily determined by the relative population of rotational states in the wave packet and intermolecular collisions, rather than the focusing intensity.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (482 KB)

Share:


Received:2018/9/3
Accepted:2018/11/1
Posted online:2018/11/29

Get Citation: Hongqiang Xie, Guihua Li, Jinping Yao, Wei Chu, Zhiming Chen, and Ya Cheng, "Intensity-independent molecular rotational decoherence lifetimes measured with mean wavelength shifts of femtosecond pulses," Chin. Opt. Lett. 16(12), 120201(2018)

Note: This work was supported by the National Basic Research Program of China (No. 2014CB921303), the National Natural Science Foundation of China (Nos. 61575211, 11674340, 61405220, 11404357, 61605227, 61705034, and 11704066), the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB16000000), the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (No. QYZDJ-SSW-SLH010), the Shanghai Yangfan Program (No. 16YF1412700), the Natural Science Foundation of Jiangxi Province (No. 20171BAB211007), the Science and Technology Project of Jiangxi Provincial Education Department (Nos. GJJ160587 and GJJ160576), and the Shanghai Rising-Star Program (No. 17QA1404600).



References

1. J. Yao, G. Li, X. Jia, X. Hao, B. Zeng, C. Jing, W. Chu, J. Ni, H. Zhang, H. Xie, C. Zhang, Z. Zhao, J. Chen, X. Liu, Y. Cheng, and Z. Xu, Phys. Rev. Lett. 111, 133001 (2013).

2. J. Itatani, D. Zeidler, J. Levesque, M. Spanner, D. M. Villeneuve, and P. B. Corkum, Phys. Rev. Lett. 94, 123902 (2005).

3. O. Ghafur, A. Rouzée, A. Gijsbertsen, W. K. Siu, S. Stolte, and J. J. Vrakking, Nat. Phys. 5, 289 (2009).

4. M. Spanner, S. Patchkovskii, E. Frumker, and P. Corkum, Phys. Rev. Lett. 109, 113001 (2012).

5. B. Zeng, W. Chu, G. Li, J. Yao, H. Zhang, J. Ni, C. Jing, H. Xie, and Y. Cheng, Phys. Rev. A 89, 42508 (2014).

6. T. Seideman, Phys. Rev. Lett. 83, 4971 (1999).

7. S. Ramakrishna, and T. Seideman, Phys. Rev. Lett. 95, 113001 (2005).

8. F. Calegari, C. Vozzi, S. Gasilov, E. Benedetti, G. Sansone, M. Nisoli, S. De Silvestri, and S. Stagira, Phys. Rev. Lett. 100, 123006 (2008).

9. S. Ramakrishna, and T. Seideman, J. Chem. Phys. 124, 034101 (2006).

10. N. Owschimikow, F. K?nigsmann, J. Maurer, P. Giese, A. Ott, B. Schmidt, and N. Schwentner, J. Chem. Phys. 133, 044311 (2010).

11. T. Vieillard, F. Chaussard, D. Sugny, B. Lavorel, and O. Faucher, J. Raman Spectrosc. 39, 694 (2008).

12. V. Renard, M. Renard, S. Guérin, Y. T. Pashayan, B. Lavorel, O. Faucher, and H. R. Jauslin, Phys. Rev. Lett. 90, 153601 (2003).

13. V. Renard, O. Faucher, and B. Lavorel, Opt. Lett. 30, 70 (2005).

14. Y. Feng, H. Pan, J. Liu, C. Chen, J. Wu, and H. Zeng, Opt. Express 19, 2852 (2011).

15. A. Rouzée, V. Boudon, B. Lavorel, O. Faucher, and W. Raballand, J. Chem. Phys. 123, 154309 (2005).

16. N. Xu, C. Wu, Y. Gao, H. Jiang, H. Yang, and Q. Gong, J. Phys. Chem. A 112, 612 (2008).

17. X. Ren, V. Makhija, and V. Kumarappan, Phys. Rev. A 85, 033405 (2012).

18. A. Couairon, and A. Mysyrowicz, Phys. Rep. 441, 47 (2007).

19. S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Akozbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, Can. J. Phys. 83, 863 (2005).

20. P. Béjot, Y. Petit, L. Bonacina, J. Kasparian, M. Moret, and J.-P. Wolf, Opt. Express 16, 7564 (2008).

21. C. Marceau, S. Ramakrishna, S. Genier, T. Wang, Y. Chen, F. Theberge, M. Chateauneuf, J. Dubois, T. Seideman, and S. L. Chin, Opt. Commun. 283, 2732 (2010).

22. H. Cai, J. Wu, A. Couairon, and H. Zeng, Opt. Lett. 34, 827 (2009).

23. S. Varma, Y. Chen, and H. M. Milchberg, Phys. Plasmas 16, 056702 (2009).

24. J. K. Wahlstrand, J. H. Odhner, E. T. McCole, Y. Cheng, J. P. Palastro, R. J. Levis, and H. M. Milchberg, Phys. Rev. A 87, 053801 (2013).

25. J. Papeer, D. Gordon, P. Sprangle, M. Botton, and A. Zigler, Appl. Phys. Lett. 103, 244102 (2013).

26. H. Xie, B. Zeng, G. Li, W. Chu, H. Zhang, C. Jing, J. Yao, J. Ni, Z. Wang, Z. Li, and Y. Cheng, Phys. Rev. A 90, 042504 (2014).

27. H. Xie, G. Li, W. Chu, B. Zeng, J. Yao, C. Jing, Z. Li, and Y. Cheng, New J. Phys. 17, 073009 (2015).

28. J. Yao, G. Li, C. Jing, B. Zeng, W. Chu, J. Ni, H. Zhang, H. Xie, C. Zhang, H. Li, H. Xu, S. L. Chin, Y. Cheng, and Z. Xu, New J. Phys. 15, 023046 (2013).

29. G. Li, C. Jing, B. Zeng, H. Xie, J. Yao, W. Chu, J. Ni, H. Zhang, H. Xu, Y. Cheng, and Z. Xu, Phys. Rev. A 89, 033833 (2014).

30. P. W. Dooley, I. V. Litvinyuk, K. F. Lee, D. M. Rayner, M. Spanner, D. M. Villeneuve, and P. B. Corkum, Phys. Rev. A 68, 023406 (2003).

31. N. St. J. Braithwaite, Plasma Sources Sci. Technol. 9, 517 (2000).

32. A. A. Milner, A. Korobenko, J. W. Hepburn, and V. Milner, Phys. Rev. Lett. 11, 3043005 (2014).

33. P. Peng, Y. Bai, N. Li, and P. Liu, AIP Adv. 51, 27205 (2015).


Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备15018463号-7 公安备案沪公网安备 31011402005522号