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Entanglement dynamics of W-like states in an open system
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The pairwise entanglement dynamics in a multipartite open system consisting of three entangled cavity
photons locally coupled with independent N -mode reservoirs is studied via concurrence. The initial states
of cavity photons are prepared in two types of W-like states while the corresponding reservoirs are prepared
in the factorable vacuum state. The result shows that all the pairwise concurrences of the total system
including cavities and reservoirs undergo qualitatively different dynamical behaviors. Among the two W-
like states, only one could exhibit entanglement sudden death (ESD) leading the corresponding reservoirs to
exhibit entanglement sudden birth. In addition, by taking the entanglement of the corresponding reservoirs
into account, entanglement invariants are constructed for the W-like state that does not undergo ESD.
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Entanglement can be exploited to perform various in-
triguing global tasks in quantum computation and
quantum communication because it possesses ‘spooky’
distance-independent nonlocality. However, in the pro-
cess of entanglement distribution and qubit manipula-
tion, each qubit is unavoidably exposed to its own un-
controllable environment, so the critical challenge for re-
alizing quantum information processing (QIP) is the con-
trol of evolution of qubits in the presence of environmen-
tal noises and manipulation inaccuracies[1]. This con-
trol may be easily achieved for a single qubit, but for
many qubits, entanglement dynamics has been a difficult
subject and has attracted extensive interests in various
contexts[2−12]. Recently, it has been shown that entan-
glement can be lost completely in a finite time despite of
the fact that complete decoherence only occurs asymp-
totically. This phenomenon, named entanglement sud-
den death (ESD), has been theoretically predicted by Yu
et al.[2], and experimentally observed for entangled pho-
ton pairs[13] and atomic ensembles[14]. Because an en-
tangled state with ESD in evolution is less robust than
states without it, ESD puts a limitation on the appli-
cation time of entanglement. Therefore, studying ESD,
especially conditions and parameter domains for its oc-
currence, is important from both theoretical and practi-
cal points of view.

The dynamics of the Greenberger-Horne-Zeilinger
(GHZ) and W-like states which are regarded as two rep-
resentatives of tripartite entangled states has been exten-
sively studied recently[15]. Note particularly that W-like
states, though being not maximally entangled, are proved
to be strictly necessary in some tasks of QIP such as re-
mote symmetric entangling[16], perfect teleportation of a
qubit[17], etc. Hence, consideration of disentanglement
dynamics of W-like states is of interest. It is well known
that the total entanglement of a three-qubit system can
generally be assessed by the pairwise entanglements and
the so-called 3-tangle, a genuine three-way entanglement
of the trio[18]. For W-like states, however, the 3-tangle
is zero and remains as long as only local operations are
performed. Therefore, it suffices to only explore the pair-

wise entanglements in studying entanglement dynamics
of W-like states.

In Ref. [19], the authors structured an open quantum
system which consisted of entangled cavity photons pre-
pared in a Bell-like state (cosθ|00〉c1c2 +sin θ|11〉c1c2) be-
ing affected by dissipation and its corresponding N -mode
reservoirs. The result shows that the ESD of a bipartite
cavity photons state is intimately linked to entanglement
sudden birth (ESB) of the reservoirs. In other words, the
presence of ESD implies the necessary apparition of ESB
and the ESB can manifest before, simultaneously, or even
after ESD. In this letter, we extend the model from two
cavities to three cavities and choose two types of W-like
states instead of Bell-like state as the initial state of cav-
ities. By calculation and analyses, we find that among
them only one could exhibit ESD leading the correspond-
ing reservoirs to experience ESB. In addition, by taking
the entanglement of the corresponding reservoirs into ac-
count, we find the entanglement invariants for the W-like
state that does not undergo ESD in the open system.

We consider three identical cavities c1, c2, and c3 inter-
acting with three spatially separate N -mode reservoirs
r1, r2, and r3, respectively. Since each mode evolves inde-
pendently, we can characterize the evolution of the over-
all system from the mode-reservoir dynamics. The in-
teraction between a single cavity mode and an N -mode
reservoir is described through the Hamiltonian (h̄=1):

Ĥ = ωâ+â +
N∑

k=1

ωk b̂+b̂ +
N∑

k=1

gk(âb̂+
k + b̂kâ+). (1)

Let us consider the case when a cavity mode contains
a single photon and its corresponding reservoir is in the
vacuum state,

|φ0〉 = |1〉c ⊗ |0̄〉r, (2)

with the state |0̄〉r =
∏N

k=1 |0k〉r. Then the evolution
given by Eq. (1) leads to the state

|φt〉cr = ξ(t)|1〉c|0̄〉r +
N∑

k=1

λk(t)|0〉c|1k〉r, (3)
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where the state |1k〉r accounts for the reservoir having
one photon in mode k. The amplitude ξ(t) converges to
ξ(t) = exp(−kt/2) in the limit of N → ∞ for a reser-
voir with a flat spectrum. If we define the normalized
collective state with one excitation in the reservoir as

|1̄〉r =
1

χ(t)

N∑

k=1

λk(t)|1k〉r, (4)

Eq. (3) can be rewritten as

|φt〉cr = ξ(t)|1〉c|0̄〉r + χ(t)|0〉c|1̄〉r, (5)

here the amplitude χ(t) converges to the expression
χ(t) = (1− exp(−kt))1/2 in the large N limit. Described
in this way the cavity and reservoir evolve as an effective
two-qubit system.

In two-qubit domains, there exist a number of good
measures of entanglement such as concurrence[20] and
negativity[21]. Although the various entanglement mea-
sures may be somewhat different quantitatively, they are
qualitatively equivalent to each other in the sense that
all of them are equal to zero for separate states. Here
we adopt the concurrence as the measure of entangle-
ment which applies to both pure and mixed states. The
concurrence C for the reduced density matrix ρ of a two-
qubit system is defined as

C(ρ) = max{0, λ
1/2
1 − λ

1/2
2 − λ

1/2
3 − λ

1/2
4 }, (6)

where λi (i=1–4) with λ1 ≥ λ2 ≥ λ3 ≥ λ4 are the eigen-
values of the matrix ς = ρ(σy ⊗ σy)ρ∗(σy ⊗ σy). Here σy

is a Pauli matrix and ρ∗ is the complex conjugation of
ρ. For a system of two qubits, there are so-called X-form
states whose density matrix ρ is of the form

ρ =




x 0 0 v
0 y u 0
0 u∗ z 0
v∗ 0 0 w


 , (7)

with x, y, z, w are real positive and u, v are complex quan-
tities. The X-class states have the property that the
corresponding two-qubit density matrix preserves the X-
form during the system evolution. For the X-state equa-
tion (7), the concurrence can be derived as

C(ρ) = 2max{0, |u| − √xw, |v| − √yz}. (8)

The two types of normalized W-like states as the initial
state of entangled cavity photons are of the form

|Φ〉c1c2c3 = (cos(θ)|001〉
+sin(θ)sin(ϕ)|010〉+ sin(θ)cos(ϕ)|100〉)c1c2c3 , (9)

and

|Ψ〉c1c2c3 = (cos(θ)|110〉
+sin(θ)sin(ϕ)|101〉+ sin(θ)cos(ϕ)|011〉)c1c2c3 , (10)

with θ and ϕ being real parameters. The pairwise en-
tanglements of these two types of W-like states for all
bipartite subsystems, in terms of concurrence, are the
same initially. However, as we shall show below, they

evolve in time in totally different ways.
We choose the state of Eq. (9) as the initial state of cav-

ities subsystem c1c2c3 and assume all their corresponding
reservoirs to be initially in the vacuum. Hence, the total
state of the system at t = 0 is

|Φ0〉 = |Φ〉c1c2c3 ⊗ |000〉r1r2r3 , (11)

where |000〉r1r2r3 ≡ |0̄〉r1 ⊗ |0̄〉r2 ⊗ |0̄〉r3 . According to Eq.
(5), the evolution of the overall system will be given by

|Φt〉 = cos(θ)|00〉c1c2 |0̄0̄〉r1r2 |φt〉c3r3
+sin(θ) sin(ϕ)|00〉c1c3 |φt〉c2r2 |0̄0̄〉r1r3
+sin(θ) cos(ϕ)|φt〉c1r1 |00〉c2c3 |0̄0̄〉r2r3 . (12)

The reduced density matrix ρΦ
c1c2 can be obtained by

tracing over the degrees of freedom of qubits c3, r1, r2,
and r3, which remains the X-form with

x = cos2(θ)ξ2(t) + χ2(t),

y = sin2(θ)sin2(ϕ)ξ2(t),

z = sin2(θ)cos2(ϕ)ξ2(t),
ω = v = 0, (13)

u =
1
2

sin2(θ) sin(2ϕ)ξ2(t).

By virtue of Eqs. (8) and (13), the corresponding con-
currence is

C(ρΦ
c1c2(t)) = sin2(θ)sin(2ϕ)e−kt. (14)

In addition to considering the entanglement evolution
of the cavities subsystem, it is also of interest to inves-
tigate the entanglement of the reservoirs involved. As a
complement to the cavity pair c1c2, we derive the concur-
rence C(ρΦ

r1r2) for the reduced density matrix ρΦ
r1r2 whose

form is the same as ρΦ
c1c2 but with the following matrix

elements:

x = cos2(θ)χ2(t) + ξ2(t),
y = sin2(θ)sin2(ϕ)χ2(t),
z = sin2(θ)cos2(ϕ)χ2(t),

ω = v = 0, (15)

u =
1
2

sin2(θ) sin(2ϕ)χ2(t).

The concurrence of ρΦ
r1r2 is thus

C(ρΦ
r1r2(t)) = sin2(θ)sin(2ϕ)(1− e−kt). (16)

In Fig. 1 we plot the time-evolution of C(ρΦ
c1c2) and

C(ρΦ
r1r2) for several parameters of the cavity’s initial

state. We see that the entanglement C(ρΦ
c1c2) decreases

asymptotically and vanishes only at t →∞ while the en-
tanglement C(ρΦ

r1r2) increases asymptotically and begins
to appear from t = 0. This implies nonexistence of ESD
of the cavities and ESB of two reservoirs. Moreover, the
loss of entanglement C(ρΦ

c1c2) for the system c1c2 is in-
stantly compensated by concurrence gain in C(ρΦ

r1r2) for
the reservoirs, that is the entanglement transfer from the
subsystem c1c2 to the subsystem r1r2 in such a way that

C(ρΦ
c1c2(t)) + C(ρΦ

r1r2(t)) = sin2(θ)sin(2ϕ)

= C(ρΦ
c1c2(0)). (17)
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Owing to the symmetry of the model, the time-
evolution of CΦ

c1c3 , C
Φ
c2c3 , C

Φ
r1r3 , and CΦ

r2r3 are analogous
as above studied and satisfy the following invariants:

C(ρΦ
c1c3(t)) + C(ρΦ

r1r3(t)) = cos(ϕ)sin(2θ)

= C(ρΦ
c1c3(0)), (18)

C(ρΦ
c2c3(t)) + C(ρΦ

r2r3(t)) = sin(ϕ)sin(2θ)

= C(ρΦ
c2c3(0)). (19)

The entanglement invariants presented in Eqs. (17)–
(19) suggest some possible kinds of ‘entanglement con-
servation’, which can be interpreted as a process of en-
tanglement transfer from cavities to the corresponding
reservoirs. Entanglement conservation is an open issue
that is largely unexplored, and one cannot expect conser-
vation of entanglement in the sense of dynamical conser-
vation laws, since entanglement is not defined as an ob-
servable or represented by a Hermitian operator[7]. The
entanglement decay (creation) of cavities (reservoirs) is
in essence due to the local interactions between cavities
and the corresponding reservoirs. This interaction leads
to the local decoherece of the cavity, which in turn de-
stroys the global entanglement of the cavities. On the
other hand, these local interactions can also produce the
entanglement between the cavity and the local reservoir,

Fig. 1. (a) Concurrence of the cavities c1, c2 and (b) con-
currence of the reservoirs r1, r2, both for the choice of Eq.
(9), as a function of the dimensionless time kt for various
parameters: θ = π/2, ϕ = π/4 (solid line); θ = π/3, ϕ = π/4
(dashed line); θ = π/3, ϕ = π/8 (dashed dot line).

Fig. 2. Evolution of other pairwises entanglement: Cc1r1

(solid line); Cc1r2 (dashed line); Cc1r3 (dotted line); Cc2r3

(dashed dot line); Cc2r2 (dot-dot-dashed line); Cc3r3 (short-
dashed line) for the initial state of Eq. (9) with θ = ϕ = π/3.

and are responsible for the newly created entanglement
of remote cavity and reservoirs. In Fig. 2, we plot the
pairwise entanglement evolution between the cavities and
the reservoirs in both the local and remote positions.

Considering the interaction between the cavities and its
reservoirs, the initial cavity’s entanglement rests in the
spreading out of entanglement over all of the system’s de-
grees of freedom that may become entangled with each
other in all possible ways. So, by calculating in the same
way, we can acquire the rest of pairwises entanglement,
namely: CΦ

c1r1 , C
Φ
c1r2 , C

Φ
c1r3 , C

Φ
c2r2 , C

Φ
c3r3 , and CΦ

c2r3 . Con-
sidering that the factor ξ(t)χ(t) is included in their ex-
pressions, all the evolutions of these pairwises entangle-
ment are similar (see Fig. 2).

As a comparison, in the following, we choose Eq. (10)
to be the initial cavities state. Then the total system
density matrix at t = 0 is

|Ψ0〉 = |Ψ〉c1c2c3 ⊗ |000〉r1r2r3 . (20)

The evolved state of the total system at time t can be
expressed in the same standard basis as

|Ψt〉 = cos(θ)|φt〉c1r1 |φt〉c2r2 |0〉c3 |0̄〉r3
+sin(θ)sin(ϕ)|φt〉c1r1 |0〉c2 |0̄〉r2 |φt〉c3r3
+sin(θ)cos(ϕ)|0〉c1 |0̄〉r1 |φt〉c2r2 |φt〉c3r3 . (21)

In this case, the reduced density matrices ρΨ
c1c2 and ρΨ

r1r2
remain in the X-form with

x = cos2(θ)χ4(t) + sin2(θ)χ2(t),
y = cos2(θ)χ2(t)ξ2(t) + sin2(θ) cos2(ϕ)ξ2(t),
z = cos2(θ)χ2(t)ξ2(t) + sin2(θ) sin2(ϕ)ξ2(t), (22)

w = cos2(θ)ξ4(t), v = 0,

u = sin2(θ)sin(ϕ)cos(ϕ)ξ2(t),

and

x = cos2(θ)ξ4(t) + sin2(θ)ξ2(t),
y = cos2(θ)χ2(t)ξ2(t) + sin2(θ)cos2(ϕ)χ2(t),
z = cos2(θ)χ2(t)ξ2(t) + sin2(θ)sin2(ϕ)χ2(t), (23)

w = cos2(θ)χ4(t), v = 0,

u = sin2(θ)sin(ϕ)cos(ϕ)χ2(t).

From Eqs. (22), (23), and (8), we obtain

C(ρΨ
c1c2) = max{0, sin2(θ)|sin(2ϕ)|ξ2(t)

− 2|cos(θ)|ξ2(t)χ(t)
√

cos2(θ)χ2(t) + sin2(θ)}, (24)

and

C(ρΨ
r1r2) = max{0, sin2(θ)|sin(2ϕ)|χ2(t)

− 2|cos(θ)|χ2(t)ξ(t)
√

cos2(θ)ξ2(t) + sin2(θ)}. (25)

To visualize the time evolution, we plot C(ρΨ
c1c2) and

C(ρΨ
r1r2) as functions of rescaled time kt for some definite

initial states of cavities c1, c2, c3 with different parame-
ters in Fig. 3. From Fig. 3(a) we see that the entangle-
ment between cavities c1 and c2 can abruptly vanishes in
a finite time and the length of the time interval for the
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zero entanglement is dependent on the degree of entangle-
ment of the initial state, namely, the smaller the amount
of initial cavity’s entanglement, the shorter the time at
which C(ρΨ

c1c2) reaches zero. We also see that the sud-
den birth of entanglement arises between the two reser-
voirs when the entanglement between the two cavities
suddenly disappears. Note that the entanglement con-
tained initially in the cavity-cavity subsystem is trans-
ferred to the corresponding reservoir subsystem but the
sum C(ρΨ

c1c2)+C(ρΨ
r1r2) is not preserved as for the choice

of Eq. (9) considered above. The time for which ESD
and ESB occur can be calculated from Eqs. (24) and (25)
as

tESD = − 1
k ln[1− 1

2 tan2(θ)(
√

1 + sin2(2ϕ)− 1)],

tESB = − 1
k ln[ 12 tan2(θ)(

√
1 + sin2(2ϕ)− 1)]. (26)

Obviously, from Eq. (26) we learn that ESB occurs

for tan2(θ)(
√

1 + sin2(2ϕ) − 1) < 2, as is the case

for ESD. Furthermore, when csc2(θ) =
√

1 + sin2(2ϕ),
tESD = tESB, that is, ESD and ESB happen simulta-

neously; when csc2(θ) > (<)
√

1 + sin2(2ϕ), ESB can
occurs after (before) ESD. For example, if ϕ = π/4, then
θ ≈ 57◦, we obtain tESD = tESB = k−1 ln (2), as shown
in Fig. 4.

Making use of the same way above, we can calcu-
late other concurrences of cavity-cavity (or reservoir-
reservoir) subsystem, namely: c1 ⊗ c3, c2 ⊗ c3 (r1 ⊗
r3, r2 ⊗ r3) and find that the evolution of these concur-
rences is very resemble with that of c1 ⊗ c2 and r1 ⊗ r2.
Simultaneously, to study how the entanglement is shared
among the parties in this case, we also acquire other con-
currences of two qubits between cavities and reservoirs,
namely CΨ

c1r1 , C
Ψ
c1r2 , C

Ψ
c1r3 , C

Ψ
c2r2 , C

Ψ
c3r3 , C

Ψ
c2r3 , however, in

contrast with the first case (Fig. 2), the dynamics evo-
lution of these concurrences is very slight. In particu-
lar for CΨ

c1r2 , C
Ψ
c1r3 , C

Ψ
c2r3 , the degree of entanglement is

Fig. 3. (a) Concurrence of the cavities c1, c2 and (b) con-
currence of the reservoirs r1, r2, both for the choice of Eq.
(10), as a function of the dimensionless time kt for various
parameters: θ = π/2, ϕ = π/4 (solid line); θ = π/3, ϕ = π/4
(dashed line); θ = π/4, ϕ = π/4 (dashed dot line).

Fig. 4. Evolution of Cc1c2 and Cr1r2 for the initial state of
Eq. (10): Cc1c2 (solid line), Cr1r2 (dashed dot line) with
θ = π/3, ϕ = π/4; Cc1c2 (dashed line), Cr1r2 (dotted line)
with θ = π/4, ϕ = π/4.

remained zero until both θ and ϕ are very small, that is,
the entanglement contained initially between the cavities
(c1⊗c2, c1⊗c3, c2⊗c3) flows a little into the joint-system
of c1 ⊗ r2, c1 ⊗ r3, c2 ⊗ r3 along the evolution of the total
system.

In conclusion, we have investigated the dynamics of
disentanglement of tripartite W-like states in an open
system where three entangled cavity photons are cou-
pled locally with three independent N -mode reservoirs.
We have considered two initial conditions determined by
two types of W-like states given by Eqs. (9) and (10)
but the same vacuum state of the reservoirs. Among the
two cases, the loss of pairwise entanglement is related
to the birth of entanglement between the corresponding
reservoirs and only one W-like state could exhibit ESD
leading the corresponding reservoirs to experience ESB.
Physically, this is due to the assumption that the reser-
voirs are initially in vacuum. Therefore, unexcited cavi-
ties do not interact with the reservoirs, while only excited
ones do. Obviously, the larger the number of the initial
excited cavities, the stronger is the cavity-reservoir cou-
pling and, thus, the quicker is the transfer of entangle-
ment from the cavities to the reservoirs, i.e., the sooner
the vanishing of the entanglement. Since at t = 0 the
number of excited cavities is one for state (9) and two for
state (10), the latter interacts with the cavities stronger
than the former. That is why ESD may occur for the lat-
ter but does not happen for the former. In addition, by
taking the entanglement of the corresponding reservoirs
into account, the entanglement invariants for the W-like
state that does not undergo ESD are constructed. As a
matter of practical application, our results suggest that
it is preferable to use the state of Eq. (9) rather than
those of Eq. (10) in QIP. Since the W-like states have
a lot of unique applications, studying the W-like states
including their entanglement dynamics is necessary.
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11. L. Derkacz and L. Jakóbczyk, Phys. Rev. A 74, 032313
(2006).

12. G. Gordon and G. Kurizki, Phys. Rev. Lett. 97, 110503
(2006).

13. M. P. Almeida, F. de Melo, M. Hor-Meyll, A. Salles, S.
P. Walborn, P. H. S. Ribeiro, and L. Davidovich, Science
316, 579 (2007).

14. J. Laurat, K. S. Choi, H. Deng, C. W. Chou, and H. J.
Kimble, Phys. Rev. Lett. 99, 180504 (2007).

15. W. Dür, G. Vidal, and J. I. Cirac, Phys. Rev. A 62,
062314 (2000).

16. N. B. An, Phys. Rev. A 69, 022315 (2004).

17. P. Agrawal and A. Pati, Phys. Rev. A 74, 062320 (2006).

18. V. Coffman, J. Kundu, and W. K. Wootters, Phys. Rev.
A 61, 052306 (2000).
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